• 大整数加减乘除模板


    模板只适用于正整数

    大整数乘法:

    an an-1 ... a1 a0和

    bm bm-1 ... b1 b0相乘。

    则对应结果的第k位就应该是a[i] * a[j] (i + j = k,  0 <= i,j <= k)

    不考虑进位的情况下。

    所以最后只要从低位往高位进位就解决了。

    除法:模拟除法

    加法:对应位相加,进位相加

    减法:转换成大数减小数,借位相减

    参考至代号4101

    代码:
    #include <iostream>
    #include <fstream>
    #include <string>
    #include <cstring>
    #include <cstdio>
    #include <cstdlib>
    #include <algorithm>
    #include <climits>
    using namespace std;
    class bign
    {
    private:
        static const int maxn = 5000;
        int op[maxn];
        int len;//数长
        void clean()
        {
            while (len > 0 && !op[len])//去除前导0
                len--;
            len++;
        }
    
        void sum(bign &a, const bign &b)//大数减小数,结果在a中
        {
            for (int i = 0; i < a.len; i++)
            {
                a.op[i] -= b.op[i];
                if (a.op[i] < 0)
                {
                    a.op[i] += 10;
                    a.op[i + 1]--;
                }
            }
            a.clean();
        }
    public:
        bign(const string &s)
        {
            *this = s;
        }
    
        bign()
        {
            memset(op, 0, sizeof(op));
            len = 1;//默认为0
        }
    
        bign(int num)
        {
            *this = num;
        }
    
        bign operator = (int num)
        {
            char s[20]; sprintf(s, "%d", num);
            *this = s;
            return *this;
        }
    
        bign operator = (const string &s)
        {
            memset(op, 0, sizeof(op));
            len = s.length();
            for (int i = 0, j = len - 1; j >= 0; j--, i++)
                op[i] = s[j] - '0';
            clean();
            return *this;
        }
    
        bign operator + (const bign &b)
        {
            bign c = *this;
            int i;
            c.len = max(c.len, b.len);//取长度高的
            for (i = 0; i < c.len; i++)//对应位相加
            {
                c.op[i] += b.op[i];
                if (c.op[i] > 9)//处理进位
                {
                    c.op[i + 1]++;
                    c.op[i] -= 10;
                }
            }
            c.clean();
            return c;
        }
    
        bign operator - (const bign &b)
        {
            if (*this < b)
            {
                bign c = b;
                sum(c, *this);
                return -c;
            }
            bign c = *this;
            sum(c, b);
            c.clean();
            return c;
        }
    
        bign operator * (const bign &b)const
        {
            int i, j;
            bign c;
            for (i = 0; i < this->len; i++)
                for (j = 0; j < b.len; j++)
                {
                    c.op[i + j] += this->op[i] * b.op[j];
                }
            c.len = this->len + b.len;//长度最多为两数长度之和
            for (i = 0; i < c.len; i++)
            {
                c.op[i + 1] += (c.op[i] / 10);
                c.op[i] %= 10;
            }
            c.clean();
            return c;
        }
    
        bign operator / (const bign &b)//模拟除法
        {
            int i, j;
            bign c = *this, a;
            for (i = c.len - 1; i >= 0; i--)
            {
                a = a * 10 + c.op[i];
                for (j = 1; j < 10; j++)//a是b的多少倍
                    if (a < b * j)
                        break;
                j--;
                a = a - b * j;//余数
                c.op[i] = j;//对应位的倍数
            }
            c.clean();
            return c;
        }
    
        bign operator % (const bign &b)
        {
            int i, j;
            bign c = *this, a;
            for (i = c.len - 1; i >= 0; i--)
            {
                a = a * 10 + c.op[i];
                for (j = 1; j < 10; j++)//a是b的多少倍
                    if (a < b * j)
                        break;
                j--;
                a = a - b * j;//余数
            }
            return a;
        }
    
        bign operator ^ (int n)
        {
            bign c = 1;
            bign d = *this;
            while (n)
            {
                if (n & 1)
                    c = c * d;
                d = d * d;
                n >>= 1;
            }
            return c;
        }
    
        bign operator - ()//取反
        {
            bign c = *this;
            c.op[len - 1] = -c.op[len - 1];//高位取反
            return c;
        }
    
        bool operator < (const bign &b)
        {
            if (len == b.len)
            {
                for (int i = len - 1; i >= 0; i--)
                {
                    if (op[i] != b.op[i])
                        return op[i] < b.op[i];
                }
            }
            return len < b.len;
        }
        friend ostream &operator << (ostream &out, const bign &res)
        {
            for (int i = res.len - 1; i >= 0; i--)
                out<<res.op[i];
            //out<<endl;
            return out;
        }
    
        friend istream &operator >> (istream &in, bign &res)
        {
            string s;
            in>>s;
            res = s;
            return in;
        }
    
        string to_str()
        {
            string s;
            for (int i = 0; i < len; i++)
                s += (op[i] + '0');
            return s;
        }
    
        int length()
        {
            return len;
        }
    };
    
    int main()
    {
        bign a(9998);
        bign b(11);
        bign c =  a % b;
        cout<<c<<endl;
        return 0;
    }
    View Code
  • 相关阅读:
    A. Two Semiknights Meet DFS
    Dummy Guy 几何
    Electrification Plan MST
    Parallel and Perpendicular 几何,数学
    A. Soroban 暴力+水题
    B. Fence 前缀和 水题
    Max Sum http://acm.hdu.edu.cn/showproblem.php?pid=1003
    亲和串 http://acm.hdu.edu.cn/showproblem.php?pid=2203
    N! http://acm.hdu.edu.cn/showproblem.php?pid=1042
    Let the Balloon Rise http://acm.hdu.edu.cn/showproblem.php?pid=1004
  • 原文地址:https://www.cnblogs.com/jecyhw/p/3669823.html
Copyright © 2020-2023  润新知