• Python之CVXOPT模块


      Python中支持Convex Optimization(凸规划)的模块为CVXOPT,其安装方式为:

    1. 卸载原Pyhon中的Numpy
    2. 安装CVXOPT的whl文件,链接为:https://www.lfd.uci.edu/~gohlke/pythonlibs/
    3. 安装Numpy+mkl的whl文件,链接为:https://www.lfd.uci.edu/~gohlke/pythonlibs/

    之所以选择这种安装方式,是因为Python的whl和pip直接install的不兼容性。

      CVXOPT的官方说明文档网址为:http://cvxopt.org/index.html, 现最新版本为1.1.9,由Martin Andersen, Joachim Dahl 和Lieven Vandenberghe共同开发完成,能够解决线性规划和二次型规划问题,其应用场景如SVM中的Hard Margin SVM.

      CVXOPT使用举例如下:

    线性规划问题

    例1:

    ![](//upload-images.jianshu.io/upload_images/9419034-6210ca566db58153.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

    Python程序代码:

    import numpy as np
    from cvxopt import matrix, solvers
    
    A = matrix([[-1.0, -1.0, 0.0, 1.0], [1.0, -1.0, -1.0, -2.0]])
    b = matrix([1.0, -2.0, 0.0, 4.0])
    c = matrix([2.0, 1.0])
    
    sol = solvers.lp(c,A,b)
    
    print(sol['x'])
    print(np.dot(sol['x'].T, c))
    print(sol['primal objective'])
    

    输出结果:

         pcost       dcost       gap    pres   dres   k/t
     0:  2.6471e+00 -7.0588e-01  2e+01  8e-01  2e+00  1e+00
     1:  3.0726e+00  2.8437e+00  1e+00  1e-01  2e-01  3e-01
     2:  2.4891e+00  2.4808e+00  1e-01  1e-02  2e-02  5e-02
     3:  2.4999e+00  2.4998e+00  1e-03  1e-04  2e-04  5e-04
     4:  2.5000e+00  2.5000e+00  1e-05  1e-06  2e-06  5e-06
     5:  2.5000e+00  2.5000e+00  1e-07  1e-08  2e-08  5e-08
    Optimal solution found.
    {'primal objective': 2.4999999895543072, 's': <4x1 matrix, tc='d'>, 'dual infeasibility': 2.257878974569382e-08, 'primal slack': 2.0388399547464153e-08, 'dual objective': 2.4999999817312535, 'residual as dual infeasibility certificate': None, 'dual slack': 3.529915972607509e-09, 'x': <2x1 matrix, tc='d'>, 'iterations': 5, 'gap': 1.3974945737723005e-07, 'residual as primal infeasibility certificate': None, 'z': <4x1 matrix, tc='d'>, 'y': <0x1 matrix, tc='d'>, 'status': 'optimal', 'primal infeasibility': 1.1368786228004961e-08, 'relative gap': 5.5899783359379607e-08}
    [ 5.00e-01]
    [ 1.50e+00]
    
    [[ 2.49999999]]
    

    例2

    ![](//upload-images.jianshu.io/upload_images/9419034-31b25056ba98ac03.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

    Python程序代码

    import numpy as np
    from cvxopt import matrix, solvers
    
    A = matrix([[1.0, 0.0, -1.0], [0.0, 1.0, -1.0]])
    b = matrix([2.0, 2.0, -2.0])
    c = matrix([1.0, 2.0])
    d = matrix([-1.0, -2.0])
    
    sol1 = solvers.lp(c,A,b)
    min = np.dot(sol1['x'].T, c)
    sol2 = solvers.lp(d,A,b)
    max = -np.dot(sol2['x'].T, d)
    
    print('min=%s,max=%s'%(min[0][0], max[0][0]))
    

    输出结果:

         pcost       dcost       gap    pres   dres   k/t
     0:  4.0000e+00 -0.0000e+00  4e+00  0e+00  0e+00  1e+00
     1:  2.7942e+00  1.9800e+00  8e-01  9e-17  7e-16  2e-01
     2:  2.0095e+00  1.9875e+00  2e-02  4e-16  2e-16  7e-03
     3:  2.0001e+00  1.9999e+00  2e-04  2e-16  6e-16  7e-05
     4:  2.0000e+00  2.0000e+00  2e-06  6e-17  5e-16  7e-07
     5:  2.0000e+00  2.0000e+00  2e-08  3e-16  7e-16  7e-09
    Optimal solution found.
         pcost       dcost       gap    pres   dres   k/t
     0: -4.0000e+00 -8.0000e+00  4e+00  0e+00  1e-16  1e+00
     1: -5.2058e+00 -6.0200e+00  8e-01  1e-16  7e-16  2e-01
     2: -5.9905e+00 -6.0125e+00  2e-02  1e-16  0e+00  7e-03
     3: -5.9999e+00 -6.0001e+00  2e-04  1e-16  2e-16  7e-05
     4: -6.0000e+00 -6.0000e+00  2e-06  1e-16  2e-16  7e-07
    Optimal solution found.
    min=2.00000000952,max=5.99999904803
    

    二次型规划问题

    ![](//upload-images.jianshu.io/upload_images/9419034-4d166504dc07d305.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
    其中P,q,G,h,A,b为输入矩阵,该问题求解采用QP算法。

    例1:

    ![](//upload-images.jianshu.io/upload_images/9419034-1a9a8372452e04b9.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

    Python程序代码:

    from cvxopt import matrix, solvers
    
    Q = 2*matrix([[2, .5], [.5, 1]])
    p = matrix([1.0, 1.0])
    G = matrix([[-1.0,0.0],[0.0,-1.0]])
    h = matrix([0.0,0.0])
    A = matrix([1.0, 1.0], (1,2))
    b = matrix(1.0)
    
    sol=solvers.qp(Q, p, G, h, A, b)
    print(sol['x'])
    print(sol['primal objective'])
    

    输出结果:

         pcost       dcost       gap    pres   dres
     0:  1.8889e+00  7.7778e-01  1e+00  2e-16  2e+00
     1:  1.8769e+00  1.8320e+00  4e-02  0e+00  6e-02
     2:  1.8750e+00  1.8739e+00  1e-03  1e-16  5e-04
     3:  1.8750e+00  1.8750e+00  1e-05  6e-17  5e-06
     4:  1.8750e+00  1.8750e+00  1e-07  2e-16  5e-08
    Optimal solution found.
    [ 2.50e-01]
    [ 7.50e-01]
    

    例2:

    ![](//upload-images.jianshu.io/upload_images/9419034-3394875ffe315b97.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

    Python程序代码:

    from cvxopt import matrix, solvers
    
    P = matrix([[1.0, 0.0], [0.0, 0.0]])
    q = matrix([3.0, 4.0])
    G = matrix([[-1.0, 0.0, -1.0, 2.0, 3.0], [0.0, -1.0, -3.0, 5.0, 4.0]])
    h = matrix([0.0, 0.0, -15.0, 100.0, 80.0])
    
    sol=solvers.qp(P, q, G, h)
    print(sol['x'])
    print(sol['primal objective'])
    

    输出结果

         pcost       dcost       gap    pres   dres
     0:  1.0780e+02 -7.6366e+02  9e+02  0e+00  4e+01
     1:  9.3245e+01  9.7637e+00  8e+01  6e-17  3e+00
     2:  6.7311e+01  3.2553e+01  3e+01  6e-17  1e+00
     3:  2.6071e+01  1.5068e+01  1e+01  2e-17  7e-01
     4:  3.7092e+01  2.3152e+01  1e+01  5e-18  4e-01
     5:  2.5352e+01  1.8652e+01  7e+00  7e-17  3e-16
     6:  2.0062e+01  1.9974e+01  9e-02  2e-16  3e-16
     7:  2.0001e+01  2.0000e+01  9e-04  8e-17  5e-16
     8:  2.0000e+01  2.0000e+01  9e-06  1e-16  2e-16
    Optimal solution found.
    [ 7.13e-07]
    [ 5.00e+00]
    
    20.00000617311241
    
  • 相关阅读:
    【bzoj2500】幸福的道路 树形dp+单调队列
    【ARC069F】Flags 2-sat+线段树优化建图+二分
    【bzoj2437】[Noi2011]兔兔与蛋蛋 二分图最大匹配+博弈论
    剑指offer——树的子结构
    剑指offer——反转链表
    腾讯算法岗面试算法题——计数排序
    作业帮面试题
    剑指offer——重建二叉树
    剑指offer——二维数组中的查找
    删除链表中重复的结点
  • 原文地址:https://www.cnblogs.com/jclian91/p/8446646.html
Copyright © 2020-2023  润新知