• 三种方法实现PCA算法(Python)


      主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域。它的主要作用是对高维数据进行降维。PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关。关于PCA的更多介绍,请参考:https://en.wikipedia.org/wiki/Principal_component_analysis.

      PCA的主要算法如下:

    • 组织数据形式,以便于模型使用;
    • 计算样本每个特征的平均值;
    • 每个样本数据减去该特征的平均值(归一化处理);
    • 求协方差矩阵;
    • 找到协方差矩阵的特征值和特征向量;
    • 对特征值和特征向量重新排列(特征值从大到小排列);
    • 对特征值求取累计贡献率;
    • 对累计贡献率按照某个特定比例选取特征向量集的子集合;
    • 对原始数据(第三步后)进行转换。

      其中协方差矩阵的分解可以通过按对称矩阵的特征向量来,也可以通过分解矩阵的SVD来实现,而在Scikit-learn中,也是采用SVD来实现PCA算法的。关于SVD的介绍及其原理,可以参考:矩阵的奇异值分解(SVD)(理论)

      本文将用三种方法来实现PCA算法,一种是原始算法,即上面所描述的算法过程,具体的计算方法和过程,可以参考:A tutorial on Principal Components Analysis, Lindsay I Smith. 一种是带SVD的原始算法,在Python的Numpy模块中已经实现了SVD算法,并且将特征值从大从小排列,省去了对特征值和特征向量重新排列这一步。最后一种方法是用Python的Scikit-learn模块实现的PCA类直接进行计算,来验证前面两种方法的正确性。

      用以上三种方法来实现PCA的完整的Python如下:

     1 import numpy as np
     2 from sklearn.decomposition import PCA
     3 import sys
     4 #returns choosing how many main factors
     5 def index_lst(lst, component=0, rate=0):
     6     #component: numbers of main factors
     7     #rate: rate of sum(main factors)/sum(all factors)
     8     #rate range suggest: (0.8,1)
     9     #if you choose rate parameter, return index = 0 or less than len(lst)
    10     if component and rate:
    11         print('Component and rate must choose only one!')
    12         sys.exit(0)
    13     if not component and not rate:
    14         print('Invalid parameter for numbers of components!')
    15         sys.exit(0)
    16     elif component:
    17         print('Choosing by component, components are %s......'%component)
    18         return component
    19     else:
    20         print('Choosing by rate, rate is %s ......'%rate)
    21         for i in range(1, len(lst)):
    22             if sum(lst[:i])/sum(lst) >= rate:
    23                 return i
    24         return 0
    25 
    26 def main():
    27     # test data
    28     mat = [[-1,-1,0,2,1],[2,0,0,-1,-1],[2,0,1,1,0]]
    29     
    30     # simple transform of test data
    31     Mat = np.array(mat, dtype='float64')
    32     print('Before PCA transforMation, data is:
    ', Mat)
    33     print('
    Method 1: PCA by original algorithm:')
    34     p,n = np.shape(Mat) # shape of Mat 
    35     t = np.mean(Mat, 0) # mean of each column
    36     
    37     # substract the mean of each column
    38     for i in range(p):
    39         for j in range(n):
    40             Mat[i,j] = float(Mat[i,j]-t[j])
    41             
    42     # covariance Matrix
    43     cov_Mat = np.dot(Mat.T, Mat)/(p-1)
    44     
    45     # PCA by original algorithm
    46     # eigvalues and eigenvectors of covariance Matrix with eigvalues descending
    47     U,V = np.linalg.eigh(cov_Mat) 
    48     # Rearrange the eigenvectors and eigenvalues
    49     U = U[::-1]
    50     for i in range(n):
    51         V[i,:] = V[i,:][::-1]
    52     # choose eigenvalue by component or rate, not both of them euqal to 0
    53     Index = index_lst(U, component=2)  # choose how many main factors
    54     if Index:
    55         v = V[:,:Index]  # subset of Unitary matrix
    56     else:  # improper rate choice may return Index=0
    57         print('Invalid rate choice.
    Please adjust the rate.')
    58         print('Rate distribute follows:')
    59         print([sum(U[:i])/sum(U) for i in range(1, len(U)+1)])
    60         sys.exit(0)
    61     # data transformation
    62     T1 = np.dot(Mat, v)
    63     # print the transformed data
    64     print('We choose %d main factors.'%Index)
    65     print('After PCA transformation, data becomes:
    ',T1)
    66     
    67     # PCA by original algorithm using SVD
    68     print('
    Method 2: PCA by original algorithm using SVD:')
    69     # u: Unitary matrix,  eigenvectors in columns 
    70     # d: list of the singular values, sorted in descending order
    71     u,d,v = np.linalg.svd(cov_Mat)
    72     Index = index_lst(d, rate=0.95)  # choose how many main factors
    73     T2 = np.dot(Mat, u[:,:Index])  # transformed data
    74     print('We choose %d main factors.'%Index)
    75     print('After PCA transformation, data becomes:
    ',T2)
    76     
    77     # PCA by Scikit-learn
    78     pca = PCA(n_components=2) # n_components can be integer or float in (0,1)
    79     pca.fit(mat)  # fit the model
    80     print('
    Method 3: PCA by Scikit-learn:')
    81     print('After PCA transformation, data becomes:')
    82     print(pca.fit_transform(mat))  # transformed data
    83             
    84 main()

    运行以上代码,输出结果为:

      这说明用以上三种方法来实现PCA都是可行的。这样我们就能理解PCA的具体实现过程啦~~有兴趣的读者可以用其它语言实现一下哈~~


    参考文献:

    1. PCA 维基百科: https://en.wikipedia.org/wiki/Principal_component_analysis.
    2. 讲解详细又全面的PCA教程: A tutorial on Principal Components Analysis, Lindsay I Smith.
    3. 博客:矩阵的奇异值分解(SVD)(理论):http://www.cnblogs.com/jclian91/p/8022426.html.
    4. 博客:主成分分析PCA: https://www.cnblogs.com/zhangchaoyang/articles/2222048.html.
    5. Scikit-learn的PCA介绍:http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html.
  • 相关阅读:
    【免费赠书】前端程序员修炼之路:积土而为山,积水而为海
    开源网站流量统计系统Piwik源码分析——后台处理(二)
    开源网站流量统计系统Piwik源码分析——参数统计(一)
    数学思维修炼
    《代码大全》中的变量
    linux dmesg命令参数及用法详解(linux显示开机信息命令)
    dd命令使用详解
    Linux就这个范儿 第10章 生死与共的兄弟
    Linux就这个范儿 第9章 特种文件系统
    Bash中的shopt选项
  • 原文地址:https://www.cnblogs.com/jclian91/p/8024101.html
Copyright © 2020-2023  润新知