动态规划:
lis[i] = max_{j = 0, 1, ..., i - 1, nums[j] < nums[i]} lis[j] + 1
1 class Solution { 2 public: 3 /** 4 * @param nums: The integer array 5 * @return: The length of LIS (longest increasing subsequence) 6 */ 7 int longestIncreasingSubsequence(vector<int> nums) { 8 // write your code here 9 vector<int> lis(nums.size(), 1); 10 int maxlen = 0; 11 for (int i = 1; i < (int)nums.size(); i++) { 12 for (int j = 0; j < i; j++) 13 if (nums[j] <= nums[i] && lis[j] + 1 > lis[i]) 14 lis[i] = lis[j] + 1; 15 maxlen = max(maxlen, lis[i]); 16 } 17 return maxlen; 18 } 19 };