• [LintCode] 第k大元素


    基于快速排序:

     1 class Solution {
     2 public:
     3     /*
     4      * param k : description of k
     5      * param nums : description of array and index 0 ~ n-1
     6      * return: description of return
     7      */
     8     int kthLargestElement(int k, vector<int> nums) {
     9         // write your code here
    10         int left = 0, right = nums.size() - 1;
    11         while (true) {
    12             int pos = partition(nums, left, right);
    13             if (pos == k - 1) return nums[pos];
    14             if (pos < k - 1) left = pos + 1;
    15             if (pos > k - 1) right = pos - 1;
    16         }
    17     }
    18 private:
    19     int partition(vector<int>& nums, int left, int right) {
    20         int pivot = nums[left];
    21         int l = left + 1, r = right;
    22         while (l <= r) {
    23             if (nums[l] < pivot && nums[r] > pivot)
    24                 swap(nums[l++], nums[r--]);
    25             if (nums[l] >= pivot) l++;
    26             if (nums[r] <= pivot) r--;
    27         }
    28         swap(nums[left], nums[r]);
    29         return r;
    30     }
    31 };

     基于最大堆:

     1 class Solution {
     2 public:
     3     /*
     4      * param k : description of k
     5      * param nums : description of array and index 0 ~ n-1
     6      * return: description of return
     7      */
     8     inline int left(int idx) {
     9         return (idx << 1) + 1;
    10     }
    11     inline int right(int idx) {
    12         return (idx << 1) + 2;
    13     }
    14     void max_heapify(vector<int>& nums, int idx) {
    15         int largest = idx;
    16         int l = left(idx), r = right(idx);
    17         if (l < heap_size && nums[l] > nums[largest])
    18             largest = l;
    19         if (r < heap_size && nums[r] > nums[largest])
    20             largest = r;
    21         if (largest != idx) {
    22             swap(nums[idx], nums[largest]);
    23             max_heapify(nums, largest);
    24         }
    25     }
    26     void build_max_heap(vector<int>& nums) {
    27         heap_size = nums.size();
    28         for (int i = (heap_size >> 1) - 1; i >= 0; i--)
    29             max_heapify(nums, i);
    30     }
    31     int kthLargestElement(int k, vector<int> nums) {
    32         // write your code here
    33         build_max_heap(nums);
    34         for (int i = 0; i < k; i++) {
    35             swap(nums[0], nums[heap_size - 1]);
    36             heap_size--;
    37             max_heapify(nums, 0);
    38         }
    39         return nums[heap_size];
    40     }
    41 private:
    42     int heap_size;
    43 };
  • 相关阅读:
    设计模式之-工厂模式、构造函数模式
    发布订阅小示例
    使用vue,react,angular等框架和不使用框架使用jquery的优缺点
    react优化--pureComponent
    Vue、 React比较
    ORACLE触发器和new、old特殊变量
    mysql的存储过程与自定义函数
    MySQL日期
    php(Personal Home Page)简介,安装和配置(apache服务器使用和配置1)
    话谈html语义化
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4605828.html
Copyright © 2020-2023  润新知