• [Algorithms] Longest Common Subsequence


    The Longest Common Subsequence (LCS) problem is as follows:

    Given two sequences s and t, find the length of the longest sequence r, which is a subsequence of both s and t.

    Do you know the difference between substring and subequence? Well, substring is a contiguous series of characters while subsequence is not necessarily. For example, "abc" is a both a substring and a subseqeunce of "abcde" while "ade" is only a subsequence.

    This problem is a classic application of Dynamic Programming. Let's define the sub-problem (state) P[i][j] to be the length of the longest subsequence ends at i of s and j of t. Then the state equations are

    1. P[i][j] = max(P[i][j - 1], P[i - 1][j]) if s[i] != t[j];
    2. P[i][j] = P[i - 1][j - 1] + 1 if s[i] == t[j].

    This algorithm gives the length of the longest common subsequence.  The code is as follows.

    1 int longestCommonSubsequence(string s, string t) {
    2     int m = s.length(), n = t.length();
    3     vector<vector<int> > dp(m + 1, vector<int> (n + 1, 0));
    4     for (int i = 1; i <= m; i++)
    5         for (int j = 1; j <= n; j++)
    6             dp[i][j] = (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] + 1 : max(dp[i - 1][j], dp[i][j - 1]));
    7     return dp[m][n];
    8 }

    Well, this code has both time and space complexity of O(m*n). Note that when we update dp[i][j], we only need dp[i - 1][j - 1], dp[i - 1][j] and dp[i][j - 1]. So we simply need to maintain two columns for them. The code is as follows.

     1 int longestCommonSubsequenceSpaceEfficient(string s, string t) {
     2     int m = s.length(), n = t.length();
     3     int maxlen = 0;
     4     vector<int> pre(m, 0);
     5     vector<int> cur(m, 0);
     6     pre[0] = (s[0] == t[0]);
     7     maxlen = max(maxlen, pre[0]);
     8     for (int i = 1; i < m; i++) {
     9         if (s[i] == t[0] || pre[i - 1] == 1) pre[i] = 1;
    10         maxlen = max(maxlen, pre[i]);
    11     }
    12     for (int j = 1; j < n; j++) {
    13         if (s[0] == t[j] || pre[0] == 1) cur[0] = 1;
    14         maxlen = max(maxlen, cur[0]);
    15         for (int i = 1; i < m; i++) {
    16             if (s[i] == t[j]) cur[i] = pre[i - 1] + 1;
    17             else cur[i] = max(cur[i - 1], pre[i]);
    18             maxlen = max(maxlen, cur[i]);
    19         }
    20         swap(pre, cur);
    21         fill(cur.begin(), cur.end(), 0);
    22     }
    23     return maxlen;
    24 }

    Well, keeping two columns is just for retriving pre[i - 1], we can maintain a single variable for it and keep only one column. The code becomes more efficient and also shorter. However, you may need to run some examples to see how it achieves the things done by the two-column version.

     1 int longestCommonSubsequenceSpaceMoreEfficient(string s, string t) {
     2     int m = s.length(), n = t.length();
     3     vector<int> cur(m + 1, 0);
     4     for (int j = 1; j <= n; j++) {
     5         int pre = 0;
     6         for (int i = 1; i <= m; i++) {
     7             int temp = cur[i];
     8             cur[i] = (s[i - 1] == t[j - 1] ? pre + 1 : max(cur[i], cur[i - 1]));
     9             pre = temp;
    10         }
    11     }
    12     return cur[m];
    13 }

    Now you may try this problem on UVa Online Judge and get Accepted:)

    Of course, the above code only returns the length of the longest common subsequence. If you want to print the lcs itself, you need to visit the 2-d table from bottom-right to top-left. The detailed algorithm is clearly explained here. The code is as follows.

     1 int longestCommonSubsequence(string s, string t) {
     2     int m = s.length(), n = t.length();
     3     vector<vector<int> > dp(m + 1, vector<int> (n + 1, 0));
     4     for (int i = 1; i <= m; i++)
     5         for (int j = 1; j <= n; j++)
     6             dp[i][j] = (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] + 1 : max(dp[i - 1][j], dp[i][j - 1]));
     7     int len = dp[m][n];
     8     // Print out the longest common subsequence
     9     string lcs(len, ' ');
    10     for (int i = m, j = n, index = len - 1; i > 0 && j > 0;) {
    11         if (s[i - 1] == t[j - 1]) {
    12             lcs[index--] = s[i - 1];
    13             i--;
    14             j--;
    15         }
    16         else if (dp[i - 1][j] > dp[i][j - 1]) i--;
    17         else j--;
    18     }
    19     printf("%s
    ", lcs.c_str());
    20     return len;
    21 }
  • 相关阅读:
    1.初识Redis
    2.API的理解和使用
    8.rabbitmq RPC模拟微服务架构中的服务调用
    9.[完]其他常用的rabbitmq的参数和设置
    6.Header交换机之模拟验证用户身份
    C#中复制文件夹及文件的两种方法
    python通过递归将多维字典转化为二维
    python venv flask gunicorn 部署与 pycharm 连接
    Nagios(centos 6.5)调用NSClient++/NRPE+Powershell脚本(windows server 2008 r2)监控网络情况
    Nagios 调用华为云短信平台进行报警
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4574334.html
Copyright © 2020-2023  润新知