• [Algorithms] Longest Common Subsequence


    The Longest Common Subsequence (LCS) problem is as follows:

    Given two sequences s and t, find the length of the longest sequence r, which is a subsequence of both s and t.

    Do you know the difference between substring and subequence? Well, substring is a contiguous series of characters while subsequence is not necessarily. For example, "abc" is a both a substring and a subseqeunce of "abcde" while "ade" is only a subsequence.

    This problem is a classic application of Dynamic Programming. Let's define the sub-problem (state) P[i][j] to be the length of the longest subsequence ends at i of s and j of t. Then the state equations are

    1. P[i][j] = max(P[i][j - 1], P[i - 1][j]) if s[i] != t[j];
    2. P[i][j] = P[i - 1][j - 1] + 1 if s[i] == t[j].

    This algorithm gives the length of the longest common subsequence.  The code is as follows.

    1 int longestCommonSubsequence(string s, string t) {
    2     int m = s.length(), n = t.length();
    3     vector<vector<int> > dp(m + 1, vector<int> (n + 1, 0));
    4     for (int i = 1; i <= m; i++)
    5         for (int j = 1; j <= n; j++)
    6             dp[i][j] = (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] + 1 : max(dp[i - 1][j], dp[i][j - 1]));
    7     return dp[m][n];
    8 }

    Well, this code has both time and space complexity of O(m*n). Note that when we update dp[i][j], we only need dp[i - 1][j - 1], dp[i - 1][j] and dp[i][j - 1]. So we simply need to maintain two columns for them. The code is as follows.

     1 int longestCommonSubsequenceSpaceEfficient(string s, string t) {
     2     int m = s.length(), n = t.length();
     3     int maxlen = 0;
     4     vector<int> pre(m, 0);
     5     vector<int> cur(m, 0);
     6     pre[0] = (s[0] == t[0]);
     7     maxlen = max(maxlen, pre[0]);
     8     for (int i = 1; i < m; i++) {
     9         if (s[i] == t[0] || pre[i - 1] == 1) pre[i] = 1;
    10         maxlen = max(maxlen, pre[i]);
    11     }
    12     for (int j = 1; j < n; j++) {
    13         if (s[0] == t[j] || pre[0] == 1) cur[0] = 1;
    14         maxlen = max(maxlen, cur[0]);
    15         for (int i = 1; i < m; i++) {
    16             if (s[i] == t[j]) cur[i] = pre[i - 1] + 1;
    17             else cur[i] = max(cur[i - 1], pre[i]);
    18             maxlen = max(maxlen, cur[i]);
    19         }
    20         swap(pre, cur);
    21         fill(cur.begin(), cur.end(), 0);
    22     }
    23     return maxlen;
    24 }

    Well, keeping two columns is just for retriving pre[i - 1], we can maintain a single variable for it and keep only one column. The code becomes more efficient and also shorter. However, you may need to run some examples to see how it achieves the things done by the two-column version.

     1 int longestCommonSubsequenceSpaceMoreEfficient(string s, string t) {
     2     int m = s.length(), n = t.length();
     3     vector<int> cur(m + 1, 0);
     4     for (int j = 1; j <= n; j++) {
     5         int pre = 0;
     6         for (int i = 1; i <= m; i++) {
     7             int temp = cur[i];
     8             cur[i] = (s[i - 1] == t[j - 1] ? pre + 1 : max(cur[i], cur[i - 1]));
     9             pre = temp;
    10         }
    11     }
    12     return cur[m];
    13 }

    Now you may try this problem on UVa Online Judge and get Accepted:)

    Of course, the above code only returns the length of the longest common subsequence. If you want to print the lcs itself, you need to visit the 2-d table from bottom-right to top-left. The detailed algorithm is clearly explained here. The code is as follows.

     1 int longestCommonSubsequence(string s, string t) {
     2     int m = s.length(), n = t.length();
     3     vector<vector<int> > dp(m + 1, vector<int> (n + 1, 0));
     4     for (int i = 1; i <= m; i++)
     5         for (int j = 1; j <= n; j++)
     6             dp[i][j] = (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] + 1 : max(dp[i - 1][j], dp[i][j - 1]));
     7     int len = dp[m][n];
     8     // Print out the longest common subsequence
     9     string lcs(len, ' ');
    10     for (int i = m, j = n, index = len - 1; i > 0 && j > 0;) {
    11         if (s[i - 1] == t[j - 1]) {
    12             lcs[index--] = s[i - 1];
    13             i--;
    14             j--;
    15         }
    16         else if (dp[i - 1][j] > dp[i][j - 1]) i--;
    17         else j--;
    18     }
    19     printf("%s
    ", lcs.c_str());
    20     return len;
    21 }
  • 相关阅读:
    了解WP的传感器
    载入条LoadingBar
    能分组的GridView
    ASP.NET MVC的过滤器
    ASP.NET的路由
    自己绘制的仪表盘
    可拖拽的ListBox
    自己绘制的滑块条
    利用mciSendString播放音频
    mis导入器的加强版——vdproj文件资源浏览器
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4574334.html
Copyright © 2020-2023  润新知