• [LeetCode] Add and Search Word


    This problem is an application of the Trie data structure. In the following, it is assumed that you have solved Implement Trie (Prefix Tree).

    Now, let's first look at the TrieNode class. I define it as follows.

    1 class TrieNode {
    2 public:
    3     bool isKey;
    4     TrieNode* children[26];
    5     TrieNode(): isKey(false) {
    6         memset(children, NULL, sizeof(TrieNode*) * 26); 
    7     }
    8 };

    The field isKey is to label whether the string comprised of characters starting from root to the current node is a key (word that has been added). In this problem, only lower-case letters a - zneed to be considered, so each TrieNode has at most 26 children. I store it in an array ofTrieNode*children[i] corresponds to letter 'a' + i. The remaining code defines the constructor of the TrieNode class.

    Adding a word can be done in the same way as in Implement Trie (Prefix Tree). The basic idea is to create a TrieNode corresponding to each letter in the word. When we are done, label the last node to be a key (set isKey = true). The code is as follows.

    1 void addWord(string word) {
    2     TrieNode* run = root;
    3     for (char c : word) {
    4         if (!(run -> children[c - 'a']))
    5             run -> children[c - 'a'] = new TrieNode();
    6         run = run -> children[c - 'a']; 
    7     }
    8     run -> isKey = true;
    9 }

    By the way, root is defined as private data of WordDictionary:

    1 private:
    2     TrieNode* root;

    And the WordDictionary class has a constructor to initialize root:

    1 WordDictionary() {
    2     root = new TrieNode();
    3 }

    Now we are left only with search. Let's do it. The basic idea is still the same as typical search operations in a Trie. The critical part is how to deal with the dots .. Well, my solution is very naive in this place. Each time when we reach a ., just traverse all the children of the current node and recursively search the remaining substring in word starting from that children. So I define a helper function query for search that takes in a string and a starting node. And the initial call to query is like query(word, root).

    By the way, I pass a char* instead of string to query and it greatly speeds up the code. So the initial call to query is actually query(word.c_str(), root).

    Now I put all the codes together below. Hope it to be useful!

     1 class TrieNode {
     2 public:
     3     bool isKey;
     4     TrieNode* children[26];
     5     TrieNode(): isKey(false) {
     6         memset(children, NULL, sizeof(TrieNode*) * 26);
     7     }
     8 };
     9 
    10 class WordDictionary {
    11 public:
    12     WordDictionary() {
    13         root = new TrieNode();
    14     }
    15 
    16     // Adds a word into the data structure.
    17     void addWord(string word) {
    18         TrieNode* run = root;
    19         for (char c : word) {
    20             if (!(run -> children[c - 'a'])) 
    21                 run -> children[c - 'a'] = new TrieNode();
    22             run = run -> children[c - 'a'];
    23         }
    24         run -> isKey = true;
    25     }
    26 
    27     // Returns if the word is in the data structure. A word could
    28     // contain the dot character '.' to represent any one letter.
    29     bool search(string word) {
    30         return query(word.c_str(), root);
    31     }
    32 
    33 private:
    34     TrieNode* root;
    35 
    36     bool query(const char* word, TrieNode* node) {
    37         TrieNode* run = node;
    38         for (int i = 0; word[i]; i++) {
    39             if (run && word[i] != '.')
    40                 run = run -> children[word[i] - 'a'];
    41             else if (run && word[i] == '.') { 
    42                 TrieNode* tmp = run;
    43                 for (int j = 0; j < 26; j++) {
    44                     run = tmp -> children[j];
    45                     if (query(word + i + 1, run))
    46                         return true;
    47                 }
    48             }
    49             else break;
    50         }
    51         return run && run -> isKey; 
    52     }
    53 };
    54 
    55 // Your WordDictionary object will be instantiated and called as such:
    56 // WordDictionary wordDictionary;
    57 // wordDictionary.addWord("word");
    58 // wordDictionary.search("pattern");
  • 相关阅读:
    AWS 磁盘 在线扩容(SSD 磁盘)
    磁盘扩容出错:e2fsck: Bad magic number in super-block while trying to open /dev/vdb1
    manjaro_install_all_in_one
    docker_info_06_stressTest 压力测试
    docker_info_05_registry 仓库管理
    docker_info_04_image 镜像管理
    docker_info_03_volume 数据卷管理
    docker_info_02_network 网络管理
    docker_info_01_install 安装
    docker-ce_install_centos75
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4557619.html
Copyright © 2020-2023  润新知