• Sqoop操作实践


    Sqoop操作实践

    @(Hadoop)


    Sqoop常用参命令

    序号 命令/command 说明
    1 impor ImportTool 从关系型数据库中导入数据(来自表或者查询语句)到HDFS中
    2 export ExportTool 将HDFS中的数据导入到关系型数据库中
    3 codegen CodeGenTool 获取数据库中某张表数据生成Java并打成jar包
    4 create-hive-table CreateHiveTableTool 创建Hive表
    5 eval EvalSqlTool 查看SQL执行结果
    6 import-all-tables ImportAllTablesTool 导入某个数据库下所有表到HDFS中
    7 job JobTool
    8 list-databases ListDatabasesTool 列出所有数据库名
    9 list-tables ListTablesTool 列出某个数据库下所有表
    10 merge MergeTool
    11 metastore MetastoreTool
    12 help HelpTool 查看帮助
    13 version VersionTool 查看版本

    通用参数

    序号 参数 说明 样例
    1 connect 连接关系型数据库的URL jdbc:mysql://localhost/sqoop_datas
    2 connection-manager 连接管理类,一般不用
    3 driver 连接驱动
    4 hadoop-home hadoop目录 /home/guoyun/hadoop
    5 help 查看帮助信息
    6 password 连接关系型数据库的密码
    7 username 链接关系型数据库的用户名
    8 verbose 查看更多的信息,其实是将日志级别调低

    –where和–query导入部分表数据

    Sqoop的–import使用–table指定表之后,默认是导入该表的全部数据,有时候我们可能只需要表其中一部分的数据,或者仅仅是导入小部分数据作为测试,那么可以使用–where和–query参数来进行条件限定。

    –where:例如”id<100”,只导入该表id小于100的数据,和sql的where条件是一样的。

    –query:引号中的是SQL语句,SQL执行的结果就是要导入的数据,必须和–target-dir一起使用。

    增量导入

    以下三个参数必须同时指定:

    –check-column (col):检查指定的列,根据此列判断哪些记录是新数据且需要导入的,列不能是字符相关类型(CHAR/NCHAR/VARCHAR/VARNCHAR/ LONGVARCHAR/LONGNVARCHAR),一般为数据库中的关键字。
    –incremental (mode):指定增量模式,mode包含两种方式,append和lastmodified。

    • 当表中的记录是以id持续增加导入新的记录的时候,可以使用append模式,–check-column id 用于检查id。
    • lastmodified: 表有时候也会执行更新操作,此时可以使用lastmodified导入。

    –last-value (value): –check-column的某个值,将大于该值的检查列记录导入,以确定仅将新的或者更新后的记录导入新的文件系统。

    和–append参数的区别:
    –append导入的时候不会再次创建新的HDFS目录(使用普通命令的话,会创建一个新的HDFS目录,如果该目录已存在则会失败),该命令会直接在已存在的目录下继续导入数据,但是不管数据是否重复。

    -import-all-tables导入多表

    导入的每个表数据被分别存储在以表名命名的HDFS上的不同目录中。
    使用该命令以下三个条件必须同时满足:

    • 1、每个表必须都只有一个列作为主键;
    • 2、必须将每个表中所有的数据导入,而不是部分;
    • 3、必须使用默认分隔列,且WHERE子句无任何强加的条件

    –table, –split-by, –columns, 和 –where参数在sqoop-import-all-tables命令中是不合法的。

    也就是说,使用-import-all-tables就无法使用增量导入和部分导入了。

    –exclude-tables:默认是导入该数据库的全部表,如果只想导入部分表,可以使用该参数将不想导入的表排除掉。

    map并行任务数

    Sqoop并行导入原理:
    默认情况下map的任务数是4,假设导入的表主键为id,那么Sqoop会先进行下面这样一个查询。

    select max(id) as max, select min(id) as min from table [where 如果指定了where子句];

    通过这个查询,获取到需要拆分字段(id)的最大值和最小值,假设分别是1和1000。

    然后,Sqoop会根据需要并行导入的数量,进行拆分查询,比如上面的这个例子,并行导入将拆分为如下4条SQL同时执行:

    select * from table where 0 <= id < 250;
    select * from table where 250 <= id < 500;
    select * from table where 500 <= id < 750;
    select * from table where 750 <= id < 1000;

    注意,这个拆分的字段需要是整数,使用–split-by参数进行指定。
    从上面的例子可以看出,如果需要导入的表没有主键,我们应该如何手动选取一个合适的拆分字段,以及选择合适的并行数。

    map的任务数不超过集群可以用的mr并行度(节点数),不超过数据库能性能影响的极值。

    测试

    #测试增量导入
    #第一次导入RECORD_NO<100的数据
    sqoop import --connect jdbc:oracle:thin:@ip:port:database --username uid --password pwd --target-dir /oracle/$database -m 1 --table tableName  --fields-terminated-by '01' --where "RECORD_NO<100"
    
    #第二次增量导入RECORD_NO<200的数据,从RECORD_NO=99开始
    sqoop import --check-column RECORD_NO --incremental append --last-value 99 --connect jdbc:oracle:thin:@ip:port:database --username uid --password pwd --target-dir /oracle/$database -m 1 --table tableName  --fields-terminated-by '01' --where "RECORD_NO<200"
    
    #第三次增量导入全部数据,从RECORD_NO=199开始
    sqoop import --check-column RECORD_NO --incremental append --last-value 199 --connect jdbc:oracle:thin:@ip:port:database --username uid --password pwd --target-dir /oracle/$database -m 1 --table tableName  --fields-terminated-by '01' --split-by RECORD_NO
    
    #测试多表导入
    sqoop import-all-tables --connect jdbc:oracle:thin:@ip:port:database --username uid --password pwd --target-dir /oracle/$database -m 8 --fields-terminated-by '01' --exclude-tables excludeTablesName
    
    #单表导入全部数据,使用并行导入,指定分割列
    sqoop import --connect jdbc:oracle:thin:@ip:port:database --username uid --password pwd --target-dir /oracle/$database -m 1 --table tableName  --fields-terminated-by '01' --split-by PAYMENT_ID

    测试失败,待重试

    定时导入脚本实现

    #!/bin/bash
    
    #Oracle的连接字符串,其中包含了Oracle的地址,SID,和端口号
    url=jdbc:oracle:thin:@ip:port:database
    #使用的用户名
    uid=username
    #使用的密码
    pwd=password
    #需要从Oracle中导入的表名
    tableName=tableName
    #需要从Oracle中导入的表中的字段名
    columns=columns
    #将Oracle中的数据导入到HDFS后的存放路径
    hdfsPath=path/$tableName
    
    #执行导入逻辑。将Oracle中的数据导入到HDFS中
    sqoop import --connect $url --username $uid --password $pwd --target-dir $hdfsPath  --m 1 --table $tableName --columns $columns --fields-terminated-by '01'

    设置定时执行

    #编辑cron文件,设置定时执行
    crontab -e
    
    #文件内容,每天凌晨1点执行数据导入脚本
    * 1 * * * 脚本所在路径
    
    #保存退出之后即可

    关于crontab一些知识请看:
    linux设置定制器自动执行任务

    注意事项

    • 导入关系型数据库的数据时,确保集群上的所有节点都能连接到对应数据库服务器的IP和端口号!
    • 用户名和表名一定要大写!

    可以先使用list-tables测试能否连通再执行mr导入数据
    统计导入的数据行数:

    hadoop fs -cat  /导入的文件 | wc -l 

    导入HBase示例

    #使用query参数自定义结果集,全量导入测试通过: 
    sqoop import  --connect jdbc:oracle:thin:@ip:port:database --username UID --password pwd --query 'select reverse(t.op) as ROWKEY from  table t WHERE (1=1)  and $CONDITIONS ' --hbase-table test  --column-family test  --hbase-row-key ROWKEY --hbase-create-table -m 8 --split-by ORDER_ID
    
    增量导入测试通过:
    sqoop import  --connect jdbc:oracle:thin:@ip:port:database --username UID --password pwd --query 'select reverse(t.op) as ROWKEY from  table t WHERE (1=1)  and $CONDITIONS and t.ID<23' --hbase-table testapp  --column-family test  --hbase-row-key ROWKEY --hbase-create-table -m 8 --split-by ID --hbase-create-table
    
    sqoop import  --connect jdbc:oracle:thin:@ip:port:database --username UID --password pwd --query 'select reverse(t.op) as ROWKEY from  table t WHERE (1=1)  and $CONDITIONS and t.ID<227840' --hbase-table test  --column-family test  --hbase-row-key ROWKEY --hbase-create-table -m 8 --split-by ID --check-column ID --incremental append --last-value 22

    注意事项:

    • 使用query参数时,如果sql中包含单引号,那么整个sql需要用双引号包裹起来,$CONDITIONS参数需要用进行转义,变为$CONDITIONS,否则会报错。
    • 增量导入的时候check-column指定为数字类型的字符串失败,需要使用数字类型。

    1.27更新

    检查发现导入hdfs的很多数据和oracle中的对不上,排查了很久发现是-m 8,这个并行量设置的问题(-m 1使用一个map进行导入是正确的数据)。

    猜测,可能是–split-by设置的字段造成导入的时候有的数据没有导入,有的数据重复导入,但是我使用的是rownum这个内置的变量,理应是没错的,不得其解。

    作者:@小黑

  • 相关阅读:
    nginx解决跨域问题
    SSM整合相关试题
    SSM整合案例--用户登录
    非法用户登录拦截
    SpringMVC拦截器和数据校验
    SpringMVC文件上传
    SpringMVC异常处理
    SpringMVC方法的返回值类型和自动装配
    SpringMVC
    spring和mybatis整合
  • 原文地址:https://www.cnblogs.com/jchubby/p/5449362.html
Copyright © 2020-2023  润新知