• Flink-基础概念


    flink入门

    1.有状态流式处理引擎的基石

    流式处理:每条流数据都经过你编写的代码进行处理

    分散式流式处理:保证流式数据相同的key到同一个计算实例上

    有状态分散式流式处理:状态会跟着流数据把相同的key分到同一个计算实例上,并且会对状态进行叠加,

    当key非常多的时候,状态可能会非常大,所以需要一个状态后端来维护状态。

    有状态流式处理面临的挑战:

    1⃣️状态容错:

    首先需要考虑到精确一次exactly-once的状态容错。

    简单场景的容错方法:

    有无界数据流从消息队列中输入进来,会把每个状态都保存下来,每个状态都对应一个保存的状态值。

    分散式场景下保证全域一致的快照,并且保证不中断运算:

    全域一致快照global consistent snapshot:

    检查点checkpoint:

    会周期性的产生

    分散式快照方法(基于chaling-lanbort算法):

    先由jobmanager生成一个checkpoint barrier n,类似于一条标记

    当我的source遇到这个barrier的时候就会把当前的状态保存到

    checkpoint n中,如果source是kafka,那么其实这次保存的状态就是在kafka中消费的偏移量

    当checkpoint barrier n流到下一个算子1的时候,下一个算子1就会把状态保存到checkpoint n中

    到算子2遇到barrier的时候把状态保存到表格checkpoint n中,jobmanager可以同时保存多个checkpoint,所以不会影响运算的速率

    2⃣️状态维护

    jvm heap状态后端:

    这种状态后端适用于内存比较小的情况,其实就是保存在内存中,只是在分散式

    快照的时候需要序列化

    rockdb状态后端:

    状态可以维护在磁盘中,状态每次维护都需要序列化到磁盘中,

    在分散式的情况不需要序列化

    3⃣️event-time处理

    事件时间event-time:数据流本身的时间

    ingestion-time:数据进入flink的时间

    window-processing-time:数据在flink中处理的时间

    watermarks水位线:

    水位线类似于flink中的一条标记,比如一条数据是4点的,如果设了5分钟的wateramrk,

    那么这条数据就会等到5分钟之后才开始计算

    watermark=当前最大的时间戳-延迟时间(当前最大的时间时间戳maxTS-)

    如果watermark>= 窗口的结束时间,这个窗口就会触发关闭操作。

    延迟时间的设置:

    根据数据的乱序的最大时间来确定延迟时间,延迟时间越大结果越准确但是计算结果出的越慢,延迟时间越小结果越不准确但计算结果出的快。

    watermark的传递:

    allowlateness

    当watermark到的时候,窗口触发计算,输出统计结果,但是窗口不会关闭,等到watermark涨到allowlateness的延迟才会关闭,

    比如allowlateness设置了1分钟,watermark到达时这个窗口触发计算,只有等watermark又涨了1分钟才会真正把窗口丢弃。

    sideoutputlatedata:

    可以把数据放入到侧输出流中,但是放入到侧输出流中的数据不会再叠加了,需要之后再把数据拿出来处理。

    4.状态保存和迁移

    savepoint保存点:其实就是一个手动产生的检查点

    在执行停止之前,比如升级flink,修改flink中的代码这种停止flink应用的时候,就需要

    产生一个保存点,最后通过保存点恢复数据追上当前的数据

    inputData1 = getRuntimeContext.getState(
              new ValueStateDescriptor[String]("in1",classOf[String])) 
    //在classof这里可以传入case类,或者其他类型,flink就是通过这里的类型来生成序列化器,然后在状态checkpoint的时候根据这里的序列化器做序列化的工作
    可以在恢复数据的时候通过flink的schema,恢复的时候可以更改schema改变数据结构
  • 相关阅读:
    python走起之第十七话
    python走起之第十五话
    python走起之第十四话
    python走起之第十三话
    python走起之第十二话
    python走起之第十一话
    python走起之第九话
    python走起之第九话
    python走起之第八话
    python走起之第六话
  • 原文地址:https://www.cnblogs.com/javazyh/p/13035686.html
Copyright © 2020-2023  润新知