构造出模线性方程c * x = b - a mod (2 ^ k)
很容易解。
利用LRJ书上的方法。
#include <iostream> using namespace std; #define LL long long int LL ext_gcd(LL a, LL b, LL& x, LL& y) { LL t, ret; if (!b){ x = 1, y = 0; return a; } ret = ext_gcd(b, a%b, x, y); t = x, x = y, y = t - a / b*y; return ret; } //ax = b (mod n) void gcd(LL a, LL b, LL &d, LL &x, LL &y) { if (!b) { d = a, x = 1, y = 0; } else { gcd(b, a %b, d, y, x); y -= x * (a / b); } } LL modular_linear_equation(LL a, LL b, LL n) { long long x, y, e, d; gcd(a, n, d, x, y); if (b % d) return -1; e = b / d * x % n + n; return e % (n / d); } int main() { ////c * x = b - a mod (2 ^ k) int a, b, c, k; while (cin >> a >> b >> c >> k && (a || b || c || k)) { LL num = modular_linear_equation(c, b - a, 1LL << k); if (num == -1) { cout << "FOREVER" << endl; continue; } cout << num << endl; } }