• (16)mongodb mapReduce分布式统计示例遇到的一个未解问题,求平均值不对,希望哪位大神给指点一下


      mapReduce 的优势在于分布式,这一节记录一个分布式统计的示例,整个过程分为这几步:启动分布式服务、手动分片、导入数据、执行 mapReduce。下面单独说说这几步。

    1、启动分布式服务

      参考前面的第10节和第11节,不在重复说了。

    2、手动分片:

      sh.enableSharding('test');  用test库做分片

      sh.shardCollection('test.dz',{sn:1});  指定片键,test库的dz集合,sn为片键

      mongos> for(var i=1;i<=8;i++){
      ... sh.splitAt('test.dz',{sn:i*1000});
      ... }                手动分片,当sn的值遇到1k、2k、3k...时形成一个chunk块

    3、导数据,共7052条

      ./bin/mongoimport --port 30000  -d test -c dz --type csv -f sn,date,lev,wei,jing,deep,area --headerline --file ./地震数据.csv

      登录27017查看,导入了3053条  

      > db.dz.find().count();
      3053

      登录27018查看,导入了3999条 

      > db.dz.find().count();
      3999

    4、统计地址数据的分布,经纬度都是每跨5度统计在一起。

      var map = function(){

        var j = Math.floor(this.jing / 5) * 5;
        var w = Math.floor(this.wei / 5) * 5;
        var block =j + ':' + w;
        emit(block,1);
      }

      var reduce = function(block,values){
        return Array.sum(values);
      }

      db.dz.mapReduce(map,reduce,{out:'res'});

      分析:Math.floor()函数是取整数部分 ,计算出的 j 应该是每隔 5 度为单位,例如:5、10、15、20 等,计算出 j 等于 15,经度应该坐落在区间 [15,20)内。纬度同理可以 这样得到。看一下结果:

    mongos> db.res.find();
    { "_id" : "-100:15", "value" : 9 }
    { "_id" : "-105:-40", "value" : 1 }
    { "_id" : "-105:10", "value" : 1 }
    { "_id" : "-105:15", "value" : 6 }
    { "_id" : "-105:5", "value" : 1 }
    { "_id" : "-10:-25", "value" : 1 }
    { "_id" : "-110:15", "value" : 4 }
    { "_id" : "-110:20", "value" : 1 }
    { "_id" : "-110:25", "value" : 1 }
    { "_id" : "-115:-30", "value" : 1 }
    { "_id" : "-115:-35", "value" : 2 }
    { "_id" : "-115:20", "value" : 1 }
    { "_id" : "-115:25", "value" : 4 }
    { "_id" : "-120:30", "value" : 1 }
    { "_id" : "-120:35", "value" : 3 }
    { "_id" : "-125:-60", "value" : 1 }
    { "_id" : "-125:35", "value" : 1 }
    { "_id" : "-125:40", "value" : 2 }
    { "_id" : "-130:40", "value" : 2 }
    { "_id" : "-130:45", "value" : 4 }
    Type "it" for more
    mongos> it
    { "_id" : "-135:50", "value" : 8 }
    { "_id" : "-135:55", "value" : 2 }
    { "_id" : "-140:55", "value" : 3 }
    { "_id" : "-145:55", "value" : 1 }
    { "_id" : "-145:60", "value" : 1 }
    { "_id" : "-150:55", "value" : 1 }
    { "_id" : "-150:65", "value" : 1 }
    { "_id" : "-155:55", "value" : 6 }
    { "_id" : "-155:60", "value" : 2 }
    { "_id" : "-15:-20", "value" : 1 }
    { "_id" : "-15:-5", "value" : 1 }
    { "_id" : "-15:-60", "value" : 1 }
    { "_id" : "-15:70", "value" : 2 }
    { "_id" : "-160:15", "value" : 1 }
    { "_id" : "-160:55", "value" : 2 }
    { "_id" : "-160:65", "value" : 1 }
    { "_id" : "-165:50", "value" : 2 }
    { "_id" : "-170:50", "value" : 5 }
    { "_id" : "-175:-20", "value" : 16 }
    { "_id" : "-175:-25", "value" : 13 }
    Type "it" for more
    mongos> it
    { "_id" : "-175:50", "value" : 10 }
    { "_id" : "-180:-15", "value" : 2 }
    { "_id" : "-180:-20", "value" : 26 }
    { "_id" : "-180:-25", "value" : 23 }
    { "_id" : "-180:-30", "value" : 7 }
    { "_id" : "-180:-35", "value" : 22 }
    { "_id" : "-180:50", "value" : 9 }
    { "_id" : "-20:-40", "value" : 1 }
    { "_id" : "-20:-45", "value" : 1 }
    { "_id" : "-20:-5", "value" : 1 }
    { "_id" : "-20:-60", "value" : 1 }
    { "_id" : "-20:-65", "value" : 1 }
    { "_id" : "-25:-5", "value" : 1 }
    { "_id" : "-25:-60", "value" : 3 }
    { "_id" : "-30:-60", "value" : 15 }
    { "_id" : "-30:-65", "value" : 1 }
    { "_id" : "-35:-60", "value" : 1 }
    { "_id" : "-35:50", "value" : 1 }
    { "_id" : "-35:55", "value" : 2 }
    { "_id" : "-45:10", "value" : 1 }
    Type "it" for more
    View Code

      为了验证数据的正确性,可以将数据导入mysql中,以下面这三条数据为例子说明 mapReduce 的统计是正确的

      { "_id" : "-100:15", "value" : 9 }  select * from dzsj w WHERE  w.jing>=-100 and w.jing<-95 and w.wei>=15 and w.wei<20

      { "_id" : "-115:25", "value" : 4 }  select * from dzsj w WHERE w.jing>=-115 and w.jing<-110 and w.wei>=25 and w.wei<30

      { "_id" : "-155:55", "value" : 6 }  select * from dzsj w WHERE w.jing>=-155 and w.jing<-150 and w.wei>=55 and w.wei<60

    5、在上面的基础上统计平均震级,这次只统计经纬度大于0的,这里出现了问题尚未解决。

      var map = function(){

        if(this.jing<0 || this.wei<0){
          return;
        }
        var j = Math.floor(this.jing / 5) * 5;
        var w = Math.floor(this.wei / 5) * 5;
        var block =j + ':' + w;
        emit(block,this.lev);
      }

      var reduce = function(block,values){
        return Array.avg(values);
      }

      db.dz.mapReduce(map,reduce,{out:'res'});

      执行结果如下:

    mongos> db.res.find().sort({value:-1});
    { "_id" : "65:25", "value" : 7.5 }
    { "_id" : "140:65", "value" : 7.3 }
    { "_id" : "60:25", "value" : 7.050000000000001 }
    { "_id" : "95:50", "value" : 7 }
    { "_id" : "140:25", "value" : 6.920833333333333 }
    { "_id" : "150:50", "value" : 6.85 }
    { "_id" : "25:40", "value" : 6.8 }
    { "_id" : "95:5", "value" : 6.8 }
    { "_id" : "125:10", "value" : 6.783333333333333 }
    { "_id" : "165:50", "value" : 6.733333333333333 }
    { "_id" : "90:20", "value" : 6.666666666666667 }
    { "_id" : "160:50", "value" : 6.645 }
    { "_id" : "175:50", "value" : 6.608333333333333 }
    { "_id" : "125:30", "value" : 6.6 }
    { "_id" : "145:0", "value" : 6.6 }
    { "_id" : "90:0", "value" : 6.5166666666666675 }
    { "_id" : "155:50", "value" : 6.4875 }
    { "_id" : "45:30", "value" : 6.47 }
    { "_id" : "140:10", "value" : 6.45 }
    { "_id" : "135:30", "value" : 6.445833333333333 }
    Type "it" for more
    mongos> it
    { "_id" : "140:15", "value" : 6.4 }
    { "_id" : "145:15", "value" : 6.4 }
    { "_id" : "145:5", "value" : 6.4 }
    { "_id" : "135:35", "value" : 6.35 }
    { "_id" : "140:20", "value" : 6.300000000000001 }
    { "_id" : "95:15", "value" : 6.300000000000001 }
    { "_id" : "165:55", "value" : 6.3 }
    { "_id" : "160:55", "value" : 6.254166666666666 }
    { "_id" : "140:40", "value" : 6.239583333333333 }
    { "_id" : "125:5", "value" : 6.222916666666666 }
    { "_id" : "125:0", "value" : 6.217499999999999 }
    { "_id" : "5:70", "value" : 6.2 }
    { "_id" : "65:40", "value" : 6.2 }
    { "_id" : "155:45", "value" : 6.1899999999999995 }
    { "_id" : "120:10", "value" : 6.185714285714285 }
    { "_id" : "145:45", "value" : 6.175000000000001 }
    { "_id" : "170:50", "value" : 6.166666666666666 }
    { "_id" : "25:35", "value" : 6.154166666666667 }
    { "_id" : "120:0", "value" : 6.15 }
    { "_id" : "135:25", "value" : 6.15 }
    Type "it" for more
    mongos> 
    View Code

     拿出两个数据来对比,发现并不是我们要的结果:

      { "_id" : "140:20", "value" : 6.300000000000001}  

      select AVG(lev) from dzsj w WHERE  w.jing>=140 and w.jing<145 and w.wei>=20 and w.wei<25  计算结果是 6.333333333333333 

      { "_id" : "145:45", "value" : 6.175000000000001 }

      select * from dzsj w WHERE  w.jing>=145 and w.jing<150 and w.wei>=45 and w.wei<50  计算结果是 6.08

      { "_id" : "160:55", "value" : 6.114285714285715 }

      select AVG(lev) from dzsj w WHERE  w.jing>=160 and w.jing<165 and w.wei>=55 and w.wei<60  计算结果是 6.050000000000001

    我们先求一下和,执行以下代码:

    var map = function(){
      if(this.jing<0 || this.wei<0){
         return;
      } 
      var j = Math.floor(this.jing / 5) * 5;
      var w = Math.floor(this.wei / 5) * 5;
      var block =j + ':' + w;
      emit(block,this.lev);
    }
    
    var map = function(){
      var j = Math.floor(this.jing / 5) * 5;
      var w = Math.floor(this.wei / 5) * 5;
      var block =j + ':' + w;
      emit(block,this.lev);
    }
    
    var reduce = function(block,values){
      return Array.sum(values);
    }
    
    db.dz.mapReduce(map,reduce,{out:'res'});
    View Code

    查看一下部分结果:

    mongos> db.res.find({_id:'140:20'});
    { "_id" : "140:20", "value" : 19 }
    mongos> db.res.find({_id:'145:45'});
    { "_id" : "145:45", "value" : 30.400000000000002 }
    mongos> db.res.find({_id:'160:55'});
    { "_id" : "160:55", "value" : 48.400000000000006 }
    mongos> 
    View Code

    与mysql中对比一下,发现求和是一样的。

      select SUM(lev) from dzsj w WHERE w.jing>=140 and w.jing<145 and w.wei>=20 and w.wei<25  19

      select SUM(lev) from dzsj w WHERE  w.jing>=145 and w.jing<150 and w.wei>=45 and w.wei<50  30.400000000000002

      select SUM(lev) from dzsj w WHERE  w.jing>=160 and w.jing<165 and w.wei>=55 and w.wei<60  48.400000000000006

    在对比一下前面求的数量,发现数量也是一样的。

      { "_id" : "140:20", "value" : 3 }
      { "_id" : "145:45", "value" : 5 }
      { "_id" : "160:55", "value" : 8 }

      select count(1) from dzsj w WHERE w.jing>=140 and w.jing<145 and w.wei>=20 and w.wei<25  3
      select count(1) from dzsj w WHERE w.jing>=145 and w.jing<150 and w.wei>=45 and w.wei<50  5
      select count(1) from dzsj w WHERE w.jing>=160 and w.jing<165 and w.wei>=55 and w.wei<60  8

    这就奇怪了,求和一样,求数量也一样,计算出的平均值不一样,哪位好心人能发现问题希望能指点一二,谢谢!

      

      

  • 相关阅读:
    [HAL]5.中断里调用HAL_Delay()进入死循环的原因
    【个人吐槽】C、Delphi、C#、java 摘抄
    【常用软件】木木的常用软件点评(2)------VC程序员常用工具篇
    【下位机软件】平均值滤波之鬼斧神工算法
    【vs2013】如何在VS的MFC中配置使用GDI+?
    【MFC】MFC改变对话框中静态文本的字体大小
    【MFC】VC界面绘制双缓存
    【MFC】如何在MFC创建的程序中更改主窗口的属性 与 父窗口 WS_CLIPCHILDREN 样式 对子窗口刷新的影响 与 窗体区域绘制问题WS_CLIPCHILDREN与WS_CLIPSIBLINGS
    Query的选择器中的通配符[id^='code']或[name^='code']
    获取checkbox数组 里面的值
  • 原文地址:https://www.cnblogs.com/javasl/p/11336712.html
Copyright © 2020-2023  润新知