• Spark 2.1.2 Streaming + Kafka 1.1.0 -- 在IDEA中通过Maven创建Spark项目


    一、开发环境中需要安装和配置如下
    安装JDK,配置JDK环境变量(jdk1.8)
    安装Scala,配置JDK环境变量(scala2.11.8)
    最好安装一个Maven,虽然Idea已经集成自带的有Maven
    测试环境中已经安装有Zookeeper集群,Kafka需要用到(3.4.5)
    测试环境中已经安装有Kafka集群(1.1.0)
    测试环境中已经安装有Spark集群(2.1.2)

    二、创建Spark项目
    1. 打开Idea
    2.配置Maven
    如果是Window系统 依次打开 File –> Settings –> Build,Execution,Deployment –> Build Tools –> Maven ;如果是 Mac 系统 IntelliJ IDEA –> Preferences –> Build,Execution,Deployment –> Build Tools

    选定Mavne的安装目录(也可以用IDEA自带的,那就不用修改此路径)

    勾选Override,后修改Maven本地仓库所在的位置


    修改Maven设置文件,添加本地仓库位置的设置,同时添加国内镜像,Maven设置文件setting.xml默认会加载主目录下~/.m2/setting.xml的文件,所以以防设置没有生效而下载的依赖包又保存到C盘了,最好此目录下也放置一份,在<settings>标签里添加<localRepository>Maven_repo路径</localRepository>,然后再在<settings>标签内的<mirrors>中添加阿里的国内镜像

    <!-- 配置阿里云的镜像仓库 -->
    <mirror>
    <id>alimaven</id>
    <name>aliyun maven</name>
    <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
    <mirrorOf>central</mirrorOf>
    </mirror>

    3.安装Scala插件
    我们做Spark基本以Scala开发为主,因此先在Idea中安装一下Scala插件

    依次打开 File –> Settings –> Plugins –> Browse Repositories… 搜索Scala,安装即可

    4.创建一个Maven项目
    一次点击 File –> New –> Project…

    左侧选中Maven,右侧选择我们项目的JDK版本,以及把Create from archetype勾上,

    在下面找到 org.apache.camel.archetypes:camel-archetype-scala,点击Next

    填写GroupID(这个一般是公司域名反写)和ArtifactId(项目名或者模块名)

    5.修改项目Scala环境
    快捷键 Ctrl + Shift + Alt + S

    选中左侧的Global Libraries 点击 + 将我们本地的Scala加载到项目环境中,也可以点击工具中的Download… 按钮选择对应的版本下载

    6.修改pom文件
    pom文件中添加如下依赖和配置

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

    <modelVersion>4.0.0</modelVersion>

    <groupId>com.yore.spark</groupId>
    <artifactId>spark-demo</artifactId>
    <version>1.0-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>spark-demo with integration Kafka</name>

    <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
    <maven.compiler.source>1.8</maven.compiler.source>
    <maven.compiler.target>1.8</maven.compiler.target>
    <scala.binary.version>2.11</scala.binary.version>
    <scala.version>2.11.8</scala.version>
    <spark.version>2.1.2</spark.version>
    <!--<spark.version>2.2.1</spark.version>-->
    <kafka.version>1.1.0</kafka.version>
    <commons-lang.version>2.6</commons-lang.version>
    </properties>


    <repositories>
    <repository>
    <id>scala-tools.org</id>
    <name>Scala-Tools Maven2 Repository</name>
    <url>http://scala-tools.org/repo-releases</url>
    </repository>
    </repositories>
    <pluginRepositories>
    <pluginRepository>
    <id>scala-tools.org</id>
    <name>Scala-Tools Maven2 Repository</name>
    <url>http://scala-tools.org/repo-releases</url>
    </pluginRepository>
    </pluginRepositories>


    <dependencies>
    <!-- scala -->
    <dependency>
    <groupId>org.scala-lang</groupId>
    <artifactId>scala-library</artifactId>
    <version>${scala.version}</version>
    </dependency>
    <dependency>
    <groupId>org.scala-lang.modules</groupId>
    <artifactId>scala-xml_${scala.binary.version}</artifactId>
    <version>1.0.6</version>
    </dependency>

    <!-- spark -->
    <!-- spark-core -->
    <dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-core_${scala.binary.version}</artifactId>
    <version>${spark.version}</version>
    </dependency>
    <!-- spark-streaming -->
    <dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming_${scala.binary.version}</artifactId>
    <version>${spark.version}</version>
    </dependency>
    <!-- spark-sql -->
    <dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_${scala.binary.version}</artifactId>
    <version>${spark.version}</version>
    </dependency>
    <!-- spark-streaming-kafka-0-10 -->
    <dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-10_${scala.binary.version}</artifactId>
    <version>${spark.version}</version>
    </dependency>
    <!-- spark-streaming-flume -->
    <dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-flume_${scala.binary.version}</artifactId>
    <version>${spark.version}</version>
    </dependency>
    <!--Spark中的RPC是使用Akka实现的, -->
    <dependency>
    <groupId>com.typesafe.akka</groupId>
    <artifactId>akka-actor_2.11</artifactId>
    <version>2.5.4</version>
    </dependency>


    <!-- fastjson -->
    <dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>fastjson</artifactId>
    <version>1.2.47</version>
    </dependency>

    <!-- commons-lang -->
    <dependency>
    <groupId>commons-lang</groupId>
    <artifactId>commons-lang</artifactId>
    <version>${commons-lang.version}</version>
    </dependency>

    <!-- logging -->
    <dependency>
    <groupId>org.apache.logging.log4j</groupId>
    <artifactId>log4j-api</artifactId>
    <version>2.11.0</version>
    <!--<scope>runtime</scope>-->
    </dependency>
    <dependency>
    <groupId>org.apache.logging.log4j</groupId>
    <artifactId>log4j-core</artifactId>
    <version>2.11.0</version>
    <!--<scope>runtime</scope>-->
    </dependency>
    <dependency>
    <groupId>org.apache.logging.log4j</groupId>
    <artifactId>log4j-slf4j-impl</artifactId>
    <version>2.11.0</version>
    <!--<scope>runtime</scope>-->
    </dependency>

    <!-- specs -->
    <dependency>
    <groupId>org.specs</groupId>
    <artifactId>specs</artifactId>
    <version>1.4.3</version>
    <scope>test</scope>
    </dependency>

    <!-- testing -->
    <dependency>
    <groupId>junit</groupId>
    <artifactId>junit</artifactId>
    <version>4.4</version>
    <scope>test</scope>
    </dependency>
    </dependencies>

    <build>
    <!--<sourceDirectory>src/main/scala</sourceDirectory>
    <testSourceDirectory>src/test/scala</testSourceDirectory>-->
    <plugins>
    <!-- the Maven compiler plugin will compile Java source files -->
    <plugin>
    <groupId>org.apache.maven.plugins</groupId>
    <artifactId>maven-compiler-plugin</artifactId>
    <version>3.7.0</version>
    <configuration>
    <!--<source>1.8</source>-->
    <!--<target>1.8</target>-->
    <encoding>${project.build.sourceEncoding}</encoding>
    </configuration>
    </plugin>
    <plugin>
    <groupId>org.apache.maven.plugins</groupId>
    <artifactId>maven-resources-plugin</artifactId>
    <version>3.0.2</version>
    <configuration>
    <encoding>UTF-8</encoding>
    </configuration>
    </plugin>
    <plugin>
    <artifactId>maven-assembly-plugin</artifactId>
    <version>2.5.3</version>
    <configuration>
    <descriptorRefs>
    <descriptorRef>jar-with-dependencies</descriptorRef>
    </descriptorRefs>
    <archive>
    <manifest>
    <mainClass>com.yore.spark.kafka.SparkKafkaDemo</mainClass>
    </manifest>
    </archive>
    </configuration>
    <executions>
    <execution>
    <id>make-assembly</id>
    <phase>package</phase>
    <goals>
    <goal>single</goal>
    </goals>
    </execution>
    </executions>
    </plugin>

    <!-- the Maven Scala plugin will compile Scala source files -->
    <plugin>
    <groupId>net.alchim31.maven</groupId>
    <artifactId>scala-maven-plugin</artifactId>
    <version>3.3.2</version>
    <executions>
    <execution>
    <id>scala-compile-first</id>
    <phase>process-resources</phase>
    <goals>
    <goal>add-source</goal>
    <goal>compile</goal>
    </goals>
    </execution>
    </executions>
    </plugin>

    <!--surefire plugin,avoid messy code when mvn test console -->
    <plugin>
    <groupId>org.apache.maven.plugins</groupId>
    <artifactId>maven-surefire-plugin</artifactId>
    <version>2.21.0</version>
    <configuration>
    <skipTests>true</skipTests>
    <forkMode>once</forkMode>
    <argLine>-Dfile.encoding=UTF-8</argLine>
    </configuration>
    </plugin>
    </plugins>
    <resources>
    <resource>
    <directory>${basedir}/src/main/scala</directory>
    <includes>
    <include>**/*.properties</include>
    <include>**/*.xml</include>
    </includes>
    </resource>
    <resource>
    <directory>${basedir}/src/main/resources</directory>
    </resource>
    </resources>
    </build>
    <reporting>
    <plugins>
    <plugin>
    <groupId>org.scala-tools</groupId>
    <artifactId>maven-scala-plugin</artifactId>
    <configuration>
    <scalaVersion>${scala.version}</scalaVersion>
    </configuration>
    </plugin>
    </plugins>
    </reporting>

    </project>
    7.增加项目配置文件
    在Spark 的Maven项目里的resources目录下新建一个my.properties文件,配置如下内容

    # kafka configs
    kafka.bootstrap.servers=cdh6:6667,cdh5:6667,cdh4:6667
    kafka.topic.source=spark-kafka-demo
    kafka.topic.sink=spark-sink-test
    kafka.group.id=spark_demo_gid1
    8.新建包
    在scala下创建com.yore.spark包

    在上面包下分别新建kafka包和utils包

    在utils包下新建Scala Class ,Name: PropertiesUtil,Kind:Object

    package com.yore.spark.utils

    import java.util.Properties

    /**
    * Properties的工具类
    *
    * Created by yore on 2017-11-9 14:05
    */
    object PropertiesUtil {

    /**
    *
    * 获取配置文件Properties对象
    *
    * @author yore
    * @return java.util.Properties
    */
    def getProperties() :Properties = {
    val properties = new Properties()
    //读取源码中resource文件夹下的my.properties配置文件
    val reader = getClass.getResourceAsStream("/my.properties")
    properties.load(reader)
    properties
    }

    /**
    *
    * 获取配置文件中key对应的字符串值
    *
    * @author yore
    * @return java.util.Properties
    */
    def getPropString(key : String) : String = {
    getProperties().getProperty(key)
    }

    /**
    *
    * 获取配置文件中key对应的整数值
    *
    * @author yore
    * @return java.util.Properties
    */
    def getPropInt(key : String) : Int = {
    getProperties().getProperty(key).toInt
    }

    /**
    *
    * 获取配置文件中key对应的布尔值
    *
    * @author yore
    * @return java.util.Properties
    */
    def getPropBoolean(key : String) : Boolean = {
    getProperties().getProperty(key).toBoolean
    }

    }
    在kafka包下新建Scala Class ,Name: KafkaSink,Kind:Object和Name: SparkKafkaDemo,Kind:Object

    KafkaSink.scala

    package com.yore.spark.kafka

    import java.util.concurrent.Future

    import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord, RecordMetadata}

    /**
    * 手动实现一个KafkaSink类,将数据发送到Kafka<br/>
    * 在构造时传入高阶函数,获得一个生产者<br/>
    *
    * 同时创建一个对应的伴生对象,定义apply方法,这样使用时不用new
    *
    * This is the key idea that allows us to work around running into NotSerializableExceptions.
    *
    * Created by yore on 2017-12-14 9:40
    */
    class KafkaSink[K,V](createProducer: () => KafkaProducer[K, V]) extends Serializable {
    lazy val producer = createProducer()

    /** 发送消息 */
    def send(topic : String, key : K, value : V) : Future[RecordMetadata] =
    producer.send(new ProducerRecord[K,V](topic,key,value))
    def send(topic : String, value : V) : Future[RecordMetadata] =
    producer.send(new ProducerRecord[K,V](topic,value))
    }


    object KafkaSink {
    import scala.collection.JavaConversions._
    def apply[K, V](config: Map[String, Object]): KafkaSink[K, V] = {
    val createProducerFunc = () => {
    val producer = new KafkaProducer[K, V](config)
    sys.addShutdownHook {
    // Ensure that, on executor JVM shutdown, the Kafka producer sends
    // any buffered messages to Kafka before shutting down.
    producer.close()
    }
    producer
    }
    new KafkaSink(createProducerFunc)
    }
    def apply[K, V](config: java.util.Properties): KafkaSink[K, V] = apply(config.toMap)
    }

    SparkKafkaDemo.scala

    package com.sinosig.spark.kafka

    import java.util.Properties

    import com.alibaba.fastjson.{JSON, JSONObject}
    import com.sinosig.spark.utils.PropertiesUtil
    import org.apache.commons.lang3.StringUtils
    import org.apache.kafka.common.serialization.{StringDeserializer, StringSerializer}
    import org.apache.log4j.{Level, Logger}
    import org.apache.spark.SparkConf
    import org.apache.spark.broadcast.Broadcast
    import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
    import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
    import org.apache.spark.streaming.kafka010._
    import org.apache.spark.streaming.{Milliseconds, StreamingContext}

    /**
    * SparkStreaming
    * kafka --> Spark --> Kafka
    *
    * Created by yore on 2018-06-29 9:44
    */
    object SparkKafkaDemo extends App{
    // default a Logger Object
    val LOG = org.slf4j.LoggerFactory.getLogger(SparkKafkaDemo.getClass)

    /*if (args.length < 2) {
    System.err.println(s"""
    |Usage: DirectKafkaWordCount <brokers> <topics>
    | <brokers> is a list of one or more Kafka brokers
    | <topics> is a list of one or more kafka topics to consume from
    |
    """.stripMargin)
    System.exit(1)
    }*/
    // 设置日志级别
    Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
    Logger.getLogger("org.apache.spark.sql").setLevel(Level.WARN)

    val Array(brokers, topics , outTopic) = /*args*/ Array(
    PropertiesUtil.getPropString("kafka.bootstrap.servers"),
    PropertiesUtil.getPropString("kafka.topic.source") ,
    PropertiesUtil.getPropString("kafka.topic.sink")
    )


    // Create context
    /* 第一种方式 */
    val sparkConf = new SparkConf().setMaster("local[2]")
    sparkConf.setAppName("spark-kafka-demo1")
    val ssc = new StreamingContext(sparkConf,Milliseconds(1000))

    /* 第二种方式 */
    /*val spark = SparkSession.builder()
    .appName("spark-kafka-demo1")
    .master("local[2]")
    .getOrCreate()
    // 引入隐式转换方法,允许ScalaObject隐式转换为DataFrame
    import spark.implicits._
    val ssc = new StreamingContext(spark.sparkContext,Seconds(1))*/

    // 设置检查点
    ssc.checkpoint("spark_demo_cp1")

    // Create direct Kafka Stream with Brokers and Topics
    // 注意:这个Topic最好是Array形式的,set形式的匹配不上
    //var topicSet = topics.split(",")/*.toSet*/
    val topicsArr = topics.split(",")

    // set Kafka Properties
    val kafkaParams = Map[String,Object](
    "bootstrap.servers" -> brokers,
    "key.deserializer" -> classOf[StringDeserializer],
    "value.deserializer" -> classOf[StringDeserializer],
    "group.id" -> PropertiesUtil.getPropString("kafka.group.id"),
    "auto.offset.reset" -> "latest",
    "enable.auto.commit" -> (false: java.lang.Boolean)
    )

    /**
    * createStream是Spark和Kafka集成包0.8版本中的方法,它是将offset交给ZK来维护的
    *
    * 在0.10的集成包中使用的是createDirectStream,它是自己来维护offset,
    * 速度上要比交给ZK维护要快很多,但是无法进行offset的监控。
    * 这个方法只有3个参数,使用起来最为方便,但是每次启动的时候默认从Latest offset开始读取,
    * 或者设置参数auto.offset.reset="smallest"后将会从Earliest offset开始读取。
    *
    * 官方文档@see <a href="http://spark.apache.org/docs/2.1.2/streaming-kafka-0-10-integration.html">Spark Streaming + Kafka Integration Guide (Kafka broker version 0.10.0 or higher)</a>
    *
    */
    val stream = KafkaUtils.createDirectStream[String, String](
    ssc,
    PreferConsistent,
    Subscribe[String, String](topicsArr, kafkaParams)
    )

    /** Kafak sink */
    // 广播KafkaSink
    val kafkaProducer: Broadcast[KafkaSink[String, String]] = {
    val kafkaProducerConfig = {
    val p = new Properties()
    p.setProperty("bootstrap.servers", brokers)
    p.setProperty("key.serializer", classOf[StringSerializer].getName)
    p.setProperty("value.serializer", classOf[StringSerializer].getName)
    p
    }
    LOG.info("kafka producer init done!")
    ssc.sparkContext.broadcast(KafkaSink[String, String](kafkaProducerConfig))
    }

    var jsonObject = new JSONObject()
    stream.filter(record =>{
    // 过滤掉不符合要求的数据
    try {
    // println("$$$ " + record.key + " " + record.value)
    jsonObject = JSON.parseObject(record.value)
    }catch {
    case e : Exception =>{
    LOG.error("转换为JSON时发生了异常! {}",e.getMessage)
    }
    }
    // 如果不为空字符时,为null,返回false过滤,否则为true通过
    StringUtils.isNotEmpty(record.value) && null != jsonObject
    }).map(record =>{
    /** 这个地方可以写自己的业务逻辑代码,因为本次是测试,简单返回一个元组 */
    jsonObject = JSON.parseObject(record.value)
    // 返出一个元组,(时间戳,json的数据日期,json的关系人姓名)
    (System.currentTimeMillis(),
    jsonObject.getString("date_dt"),
    jsonObject.getString("relater_name")
    )
    }).foreachRDD(rdd =>{
    if(!rdd.isEmpty()){
    rdd.foreach(kafkaTuple =>{
    //向Kafka发送数据
    kafkaProducer.value.send(
    outTopic,
    kafkaTuple._1 + " "+ kafkaTuple._2 + " " + kafkaTuple._3
    )
    //打印到控制台
    println(kafkaTuple._1 + " "+ kafkaTuple._2 + " " + kafkaTuple._3)
    })
    }
    })

    // 启动
    ssc.start()
    //等待关闭
    ssc.awaitTermination()

    }
    三、启动测试
    (1)远程访问Kafka节点,创建两个Topic

    [root@cdh6 kafka]# ./bin/sh kafka-topics.sh --create --zookeeper cdh2:2181,cdh3:2181,cdh4:2181,cdh5:2181,cdh6:2181 --partitions 3 --replication-factor 1 –topic spark-kafka-demo
    [root@cdh6 kafka]# ./bin/sh kafka-topics.sh --create --zookeeper cdh2:2181,cdh3:2181,cdh4:2181,cdh5:2181,cdh6:2181 --partitions 1 --replication-factor 1 –topic spark-sink-test
    (2)运行SparkKafkaDemo

    (3)在Kafka节点上,以控制台形式启动一个生产者

    [root@cdh6 kafka]# ./bin/kafka-console-producer.sh --broker-list cdh6:6667,cdh5:6667,cdh4:6667 --topic spark-kafka-demo

    (4)复制一条Json数据到生产者的控制台,格式如

    {"date_dt": "1516095986393","relater_name": "yore"}
    回车发送

    (5)查看Idea控制台运行情况,是否报错,打印的信息

    (6)在Kafka节点上,以控制台形式启动一个消费者,看结果是否已经推进来

    [root@cdh6 kafka]# ./bin/ kafka-console-consumer.sh --bootstrap-server cdh6:6667,cdh5:6667,cdh4:6667 --from-beginning --topic spark-sink-test

    四、打包
    使用IDEA中的Maven项目的打包工具直接打包

    在项目中右侧找到Maven Projects –> 项目名字(spark-demo with integration Kafka)–> package 点击开始打包。如果右侧找不到Maven Projects 可以点击一下Idea工具左下角的图标。
    打包完成会在项目的根目录下target/目录下生成两个jar包
    spark-demo-1.0-SNAPSHOT.jar
    spark-demo-1.0-SNAPSHOT-jar-with-dependencies.jar
    分别是不带依赖的项目的源码编译的jar包,带所有依赖的jar

    五、提交到集群
    到target/将带依赖的jar包上传的Spark集群以standalone client 方式提交到集群运运行

    [root@cdh4 spark2.1]# ./bin/spark-submit --master spark://cdh4:7077 --deploy-mode client

    --executor-memory 2g --total-executor-cores 2 --driver-memory 2G

    --class com.yore.spark.kafka.SparkKafkaDemo ~/yore/spark-demo-1.0-SNAPSHOT-jar-with-dependencies.jar
    在source的Topic中推送一条数据,用client模式可以在控制台查看打印的运行结果,同时查看落数据Topic中是否有数据


    ————————————————
    版权声明:本文为CSDN博主「YoreYuan」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/github_39577257/article/details/81151137

  • 相关阅读:
    《Unity3D-设置子弹发射的代码》
    《Unity3D-控制角色受伤的时候身体颜色变化的代码》
    《Unity3D-鼠标控制游戏人物的方向的代码》
    C++基础学习笔记001
    C++学习笔记
    JSON中使用jsonmapper解析的代码和步骤 学习笔记
    JSON学习笔记
    FileInfo文件的一些操作代码
    UDPClient的服务端和客户端的通信代码
    TCPListener和TCPClient之间的通信代码
  • 原文地址:https://www.cnblogs.com/javalinux/p/15060276.html
Copyright © 2020-2023  润新知