• 线程池之ThreadPoolExecutor使用


    ThreadPoolExecutor提供了四个构造方法:


     
    ThreadPoolExecutor构造方法.png

    我们以最后一个构造方法(参数最多的那个),对其参数进行解释:

     public ThreadPoolExecutor(int corePoolSize, // 1
                                  int maximumPoolSize,  // 2
                                  long keepAliveTime,  // 3
                                  TimeUnit unit,  // 4
                                  BlockingQueue<Runnable> workQueue, // 5
                                  ThreadFactory threadFactory,  // 6
                                  RejectedExecutionHandler handler ) { //7
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }
    
    序号名称类型含义
    1 corePoolSize int 核心线程池大小
    2 maximumPoolSize int 最大线程池大小
    3 keepAliveTime long 线程最大空闲时间
    4 unit TimeUnit 时间单位
    5 workQueue BlockingQueue<Runnable> 线程等待队列
    6 threadFactory ThreadFactory 线程创建工厂
    7 handler RejectedExecutionHandler 拒绝策略

    如果对这些参数作用有疑惑的请看 ThreadPoolExecutor概述
    知道了各个参数的作用后,我们开始构造符合我们期待的线程池。首先看JDK给我们预定义的几种线程池:

    一、预定义线程池
    1. FixedThreadPool
        public static ExecutorService newFixedThreadPool(int nThreads) {
            return new ThreadPoolExecutor(nThreads, nThreads,
                                          0L, TimeUnit.MILLISECONDS,
                                          new LinkedBlockingQueue<Runnable>());
        }
    
    • corePoolSize与maximumPoolSize相等,即其线程全为核心线程,是一个固定大小的线程池,是其优势;
    • keepAliveTime = 0 该参数默认对核心线程无效,而FixedThreadPool全部为核心线程;
    • workQueue 为LinkedBlockingQueue(无界阻塞队列),队列最大值为Integer.MAX_VALUE。如果任务提交速度持续大余任务处理速度,会造成队列大量阻塞。因为队列很大,很有可能在拒绝策略前,内存溢出。是其劣势;
    • FixedThreadPool的任务执行是无序的;

    适用场景:可用于Web服务瞬时削峰,但需注意长时间持续高峰情况造成的队列阻塞。

    1. CachedThreadPool
         public static ExecutorService newCachedThreadPool() {
            return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                          60L, TimeUnit.SECONDS,
                                          new SynchronousQueue<Runnable>());
        }
    
    • corePoolSize = 0,maximumPoolSize = Integer.MAX_VALUE,即线程数量几乎无限制;
    • keepAliveTime = 60s,线程空闲60s后自动结束。
    • workQueue 为 SynchronousQueue 同步队列,这个队列类似于一个接力棒,入队出队必须同时传递,因为CachedThreadPool线程创建无限制,不会有队列等待,所以使用SynchronousQueue;

    适用场景:快速处理大量耗时较短的任务,如Netty的NIO接受请求时,可使用CachedThreadPool。

    1. SingleThreadExecutor
        public static ExecutorService newSingleThreadExecutor() {
            return new FinalizableDelegatedExecutorService
                (new ThreadPoolExecutor(1, 1,
                                        0L, TimeUnit.MILLISECONDS,
                                        new LinkedBlockingQueue<Runnable>()));
        }
    

    咋一瞅,不就是newFixedThreadPool(1)吗?定眼一看,这里多了一层FinalizableDelegatedExecutorService包装,这一层有什么用呢,写个dome来解释一下:

        public static void main(String[] args) {
            ExecutorService fixedExecutorService = Executors.newFixedThreadPool(1);
            ThreadPoolExecutor threadPoolExecutor = (ThreadPoolExecutor) fixedExecutorService;
            System.out.println(threadPoolExecutor.getMaximumPoolSize());
            threadPoolExecutor.setCorePoolSize(8);
            
            ExecutorService singleExecutorService = Executors.newSingleThreadExecutor();
    //      运行时异常 java.lang.ClassCastException
    //      ThreadPoolExecutor threadPoolExecutor2 = (ThreadPoolExecutor) singleExecutorService;
        }
    

    对比可以看出,FixedThreadPool可以向下转型为ThreadPoolExecutor,并对其线程池进行配置,而SingleThreadExecutor被包装后,无法成功向下转型。因此,SingleThreadExecutor被定以后,无法修改,做到了真正的Single。

    1. ScheduledThreadPool
        public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
            return new ScheduledThreadPoolExecutor(corePoolSize);
        }
    

    newScheduledThreadPool调用的是ScheduledThreadPoolExecutor的构造方法,而ScheduledThreadPoolExecutor继承了ThreadPoolExecutor,构造是还是调用了其父类的构造方法。

        public ScheduledThreadPoolExecutor(int corePoolSize) {
            super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
                  new DelayedWorkQueue());
        }
    

    对于ScheduledThreadPool本文不做描述,其特性请关注后续篇章。

    二、自定义线程池

    以下是自定义线程池,使用了有界队列,自定义ThreadFactory和拒绝策略的demo:

    public class ThreadTest {
    
        public static void main(String[] args) throws InterruptedException, IOException {
            int corePoolSize = 2;
            int maximumPoolSize = 4;
            long keepAliveTime = 10;
            TimeUnit unit = TimeUnit.SECONDS;
            BlockingQueue<Runnable> workQueue = new ArrayBlockingQueue<>(2);
            ThreadFactory threadFactory = new NameTreadFactory();
            RejectedExecutionHandler handler = new MyIgnorePolicy();
            ThreadPoolExecutor executor = new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, unit,
                    workQueue, threadFactory, handler);
            executor.prestartAllCoreThreads(); // 预启动所有核心线程
            
            for (int i = 1; i <= 10; i++) {
                MyTask task = new MyTask(String.valueOf(i));
                executor.execute(task);
            }
    
            System.in.read(); //阻塞主线程
        }
    
        static class NameTreadFactory implements ThreadFactory {
    
            private final AtomicInteger mThreadNum = new AtomicInteger(1);
    
            @Override
            public Thread newThread(Runnable r) {
                Thread t = new Thread(r, "my-thread-" + mThreadNum.getAndIncrement());
                System.out.println(t.getName() + " has been created");
                return t;
            }
        }
    
        public static class MyIgnorePolicy implements RejectedExecutionHandler {
    
            public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
                doLog(r, e);
            }
    
            private void doLog(Runnable r, ThreadPoolExecutor e) {
                // 可做日志记录等
                System.err.println( r.toString() + " rejected");
    //          System.out.println("completedTaskCount: " + e.getCompletedTaskCount());
            }
        }
    
        static class MyTask implements Runnable {
            private String name;
    
            public MyTask(String name) {
                this.name = name;
            }
    
            @Override
            public void run() {
                try {
                    System.out.println(this.toString() + " is running!");
                    Thread.sleep(3000); //让任务执行慢点
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
    
            public String getName() {
                return name;
            }
    
            @Override
            public String toString() {
                return "MyTask [name=" + name + "]";
            }
        }
    }
    

    输出结果如下:


     
    image.png

    其中线程线程1-4先占满了核心线程和最大线程数量,然后4、5线程进入等待队列,7-10线程被直接忽略拒绝执行,等1-4线程中有线程执行完后通知4、5线程继续执行。

    总结,通过自定义线程池,我们可以更好的让线程池为我们所用,更加适应我的实际场景。



    作者:徐志毅
    链接:https://www.jianshu.com/p/f030aa5d7a28
    来源:简书
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
  • 相关阅读:
    RF基本框架搭建
    Robot Framework连接Oracle数据库
    RF接口测试
    RF-Selenium2Library关键字
    RF-autoit3中有关Send的用法
    RF-selenium2library库
    IPD产品开发流程
    python函数
    python字典
    python元组
  • 原文地址:https://www.cnblogs.com/javalinux/p/14262252.html
Copyright © 2020-2023  润新知