转自http://hi.baidu.com/aekdycoin/item/e493adc9a7c0870bad092fd9
曾经看过如下一个公式:
以上的公式如果第一次见到,难免有不少疑惑:
为什么可以这么写?限制条件为什么是x >= Phi(C),这个公式为什么正确?
今天突发奇想,在纸上YY以后得到了以下证明(个人证明,如果有问题欢迎提出)
定理 1:
对于一个数对(A,C) 必然存在一个最小的正整数 L,满足
其中SPOS 是一个大于等于0的整数(下面具体介绍)
我们称L 为(A,C) 的最小循环节长度
证明:
根据鸽巢原理,得到在x >= C 后必然出现循环,从而定理得证.
定理 2:
对于数对 (A,C) 下面的公式必然成立
其中 k >= 0
既L 的任意倍数均为一个新的循环节长度.
证明:
根据定理1,不难得证.
定理 3:
对于数对 (A,C) 必然存在 一个最大的SPOS >=0 ,满足
(1) 若x属于区间 [0,SPOS -1] 内,得到的一个剩余系的长度为SPOS;
(2) 该剩余系和x属于[SPOS,+oo]的剩余系的交集为空!
证明:
对于一个SPOS,由于[0,SPOS-1]内不存在循环,所以x属于[0,SPOS-1]内得到的值是唯一的.
而第二点的证明也不难,因为如果不为空,那么必然可以缩小SPOS的值.
定理 4:
对于数对 (A,C) 若 (A,C) == 1,那么 L | Phi(C)
证明:
显然可以由欧拉公式,得到
A^Phi(C) = 1 (mod C)
而A^0 = 1 (mod C),于是出现了循环
由定理2,该定理得证.
定理5:
对于数对 (A,C) 若 A|C
那么有
SPOS >= CNT
其中CNT为满足 A^CNT | C的最大的正整数
下面分2个情况
(1) A^CNT == C
果断显然成立
(2) A^CNT * B = C
于是我们假设对于[0,CNT] 内存在某个数i,有
A^i = A^x (mod C)
而由于x > CNT (因为[0,CNT]内不存在循环)
所以
A^CNT * A^(x - CNT) = A^i (mod A^CNT * B)
显然如果 i < CNT
那么是不可能有解的
因为(A^CNT, A^CNT * B) | A^i 显然不成立
于是Spos >= CNT 得证
定理 6:
对于一个数对 (A,C) 若存在
那么有 L | M
根据定理1,2 不难得到.
好了,上面写了那么多,是为了介绍 循环节的基本定理
下面开始正题,开始公式的证明
我们对于A 进行分解,得到素因子集合
下面我们把素因子分为2类
(1) (Pi,C) == 1
(2) (Pi,C) != 1
对于第一类情况,我们容易由定理4知道对于每一个 Pi,得到了Li ( 数对 (Pi,C) 的最小循环节长) 必然是 Phi(C) 的因子
对于第二类情况,由定理5,”消去 因子”,转化为第一类的情况.得到了 这类的素因子Pi 的Li 依然为Phi(C) 的因子
@2011-01-11 对于第二类情况的更新
由循环定义得到
(Pi^ci)^x = (Pi^ci)^(x + Li) (mod C) (x >= spos)
那么我们假设C = Pi^CNT * B, 其中 (B, Pi) = 1
那么
(Pi^ci)^x = (Pi^ci)^(x + Li) (mod Pi^CNT * B)
同时消去Pi因子,最终可以得到:
[Pi^a] * [Pi^ci]^b = [Pi^a] * [Pi^ci]^b * [Pi^ (ci * Li)] (mod B)
(Pi^a, B) = 1,逆元存在,2边同时乘上 Pi^a的逆元
[Pi^ci]^b = [Pi^ci]^b * [Pi^ (ci * Li)] (mod B)
===>
[Pi^ci] ^b = [Pi^ci] ^ (b + Li) (mod B)
Li 为Phi(B)的因子,B为C的因子,既
Li | Phi(B), B| C
下面我们构造所有素因子的循环,既求他们的LCM,那由于定理6不难知道,(A,C) 的最小循环节长 L | LCM(L1,L2…LK)
而Li |Phi(C)
所以 L | Phi(C)
之后由定理1,2 公式得证.