转载原文(有删改): http://blog.csdn.net/xiajun07061225/article/details/5813726
http://blog.163.com/kksunshine@yeah/blog/static/1186123882010111565210317/
最近在研究C++读取*.bmp文件,感谢作者的无私奉献 O(∩_∩)O
===================================================================================================================================
要识别图像中的字符,首先要会处理图像,把图像的信息读出来。这就必须先了解图像的结构,存储方式。清华大学出版的一本《数字图像处理编程入门》给了我不少帮助。第一章的Windows位图和调色板让我对bmp图像有了基本了解。对于彩色图,可以用RGB模型来表示。基本上所有颜色都可以用这三种颜色的组合来形成。但实际上也有一些差别,小于24位图都利用到了调色板,也就是一张R、G、B表,主要是为了节省存储空间。bmp文件结构如下:
图一 bmp位图结构示意图
第一部分为位图文件头BITMAPFILEHEADER,是一个结构,其定义如下:
typedef struct tagBITMAPFILEHEADER {
WORD bfType;
DWORD bfSize;
WORD bfReserved1;
WORD bfReserved2;
DWORD bfOffBits;
} BITMAPFILEHEADER;
这个结构的长度是固定的,为14个字节(WORD为无符号16位整数,DWORD为无符号32位整数),各个域的说明如下:
bfType
指定文件类型,必须是0x424D,即字符串“BM”,也就是说所有.bmp文件的头两个字节都是“BM”。
bfSize
指定文件大小,包括这14个字节。
bfReserved1,bfReserved2
为保留字,不用考虑
bfOffBits
为从文件头到实际的位图数据的偏移字节数,即图1.3中前三个部分的长度之和。
第二部分为位图信息头BITMAPINFOHEADER,也是一个结构,其定义如下:
typedef struct tagBITMAPINFOHEADER{
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount
DWORD biCompression;
DWORD biSizeImage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;
} BITMAPINFOHEADER;
这个结构的长度是固定的,为40个字节(LONG为32位整数),各个域的说明如下:
biSize
指定这个结构的长度,为40。
biWidth
指定图象的宽度,单位是象素。
biHeight
指定图象的高度,单位是象素。
biPlanes
必须是1,不用考虑。
biBitCount
指定表示颜色时要用到的位数,常用的值为1(黑白二色图), 4(16色图), 8(256色), 24(真彩色图)(新的.bmp格式支持32位色,这里就不做讨论了)。
biCompression
指定位图是否压缩,有效的值为BI_RGB,BI_RLE8,BI_RLE4,BI_BITFIELDS(都是一些Windows定义好的常量)。要说明的是,Windows位图可以采用RLE4,和RLE8的压缩格式,但用的不多。我们今后所讨论的只有第一种不压缩的情况,即biCompression为BI_RGB的情况。
biSizeImage
指定实际的位图数据占用的字节数,其实也可以从以下的公式中计算出来:
biSizeImage=biWidth’ × biHeight
要注意的是:上述公式中的biWidth’必须是4的整倍数(所以不是biWidth,而是biWidth’,表示大于或等于biWidth的,最接近4的整倍数。举个例子,如果biWidth=240,则biWidth’=240;如果biWidth=241,biWidth’=244)。
如果biCompression为BI_RGB,则该项可能为零
biXPelsPerMeter
指定目标设备的水平分辨率,单位是每米的象素个数,关于分辨率的概念,我们将在第4章详细介绍。
biYPelsPerMeter
指定目标设备的垂直分辨率,单位同上。
biClrUsed
指定本图象实际用到的颜色数,如果该值为零,则用到的颜色数为2biBitCount。
biClrImportant
指定本图象中重要的颜色数,如果该值为零,则认为所有的颜色都是重要的。
第三部分为调色板Palette,当然,这里是对那些需要调色板的位图文件而言的。有些位图,如真彩色图,前面已经讲过,是不需要调色板的,BITMAPINFOHEADER后直接是位图数据。
调色板实际上是一个数组,共有biClrUsed个元素(如果该值为零,则有2biBitCount个元素)。数组中每个元素的类型是一个RGBQUAD结构,占4个字节,其定义如下:
typedef struct tagRGBQUAD {
BYTE rgbBlue; //该颜色的蓝色分量
BYTE rgbGreen; //该颜色的绿色分量
BYTE rgbRed; //该颜色的红色分量
BYTE rgbReserved; //保留值
} RGBQUAD;
第四部分就是实际的图象数据了。对于用到调色板的位图,图象数据就是该象素颜在调色板中的索引值。对于真彩色图,图象数据就是实际的R、G、B值。下面针对2色、16色、256色位图和真彩色位图分别介绍。
对于2色位图,用1位就可以表示该象素的颜色(一般0表示黑,1表示白),所以一个字节可以表示8个象素。
对于16色位图,用4位可以表示一个象素的颜色,所以一个字节可以表示2个象素。
对于256色位图,一个字节刚好可以表示1个象素。
对于真彩色图,三个字节才能表示1个象素,哇,好费空间呀!没办法,谁叫你想让图的颜色显得更亮丽呢,有得必有失嘛。
要注意两点:
(1) 每一行的字节数必须是4的整倍数,如果不是,则需要补齐。这在前面介绍biSizeImage时已经提到了。
(2) 一般来说,.bMP文件的数据从下到上,从左到右的。也就是说,从文件中最先读到的是图象最下面一行的左边第一个象素,然后是左边第二个象素……接下来是倒数第二行左边第一个象素,左边第二个象素……依次类推 ,最后得到的是最上面一行的最右一个象素。
当了解了这些后,就可以将图片灰度化,编程黑白二色图片。再读出bmp文件的像素信息,可以将其存储在一个一维数组里面,其他的信息还有宽度和高度。以后处理图片就是直接对这个数组进行处理。接下来是进行去噪处理。一些图片常常有噪点,对识别效果造成影响,所以必须进行去噪。去噪方法很多。我的做法是对一个像素点作如下处理:取它和周围8个点共9个点的像素的平均值,效果还可以。
接下来的操作我都是参考的一篇哈尔滨工业大学工学硕士学位论文,上面的思路很清晰,感觉很不错。首先是归一化,即将图片编程32*32大小的图片。
另一种方法是非线性归一化,但是上面的求质心和散度公式看不清楚,而且没有告诉怎么用质心和散度去实现归一化。所以我就采用了线性归一化。效果比非线性归一化要差一些。
归一化之后是特征提取。
网格特征就是将32*32的图片分成4*4共16块,每个方块64个小方块。求黑色像素的个数就行了。穿越特征包括水平穿越特征和垂直穿越特征。水平穿越特征即把图片按行分成8行,每行4小行。计算每一行由白色像素到黑色像素的变化次数即可。即得到前8维水平穿越特征t1,t2,..,t8。后8维水平穿越特征利用公式求解。Pi=ti/[(t1+t2+..+t8)*10+0.5]。垂直穿越特征则类似。
16维网格特征、16维水平穿越特征和16维垂直穿越特征合起来总共48维特征。还可以求加权特征,形成64维特征。
最后是模板匹配。根据相应特征值的差值的平方和进行匹配。
#include<math.h> #include <iomanip.h> #include <stdlib.h> #include <windows.h> #include <stdio.h> #include <stdlib.h> #include <iostream.h> #include <fstream.h> //--------------------------------------------------------------------------------------- //以下该模块是完成BMP图像(彩色图像是24bit RGB各8bit)的像素获取,并存在文件名为xiang_su_zhi.txt中 unsigned char *pBmpBuf;//读入图像数据的指针 int bmpWidth;//图像的宽 int bmpHeight;//图像的高 RGBQUAD *pColorTable;//颜色表指针 int biBitCount;//图像类型,每像素位数 //------------------------------------------------------------------------------------------- //读图像的位图数据、宽、高、颜色表及每像素位数等数据进内存,存放在相应的全局变量中 bool readBmp(char *bmpName) { FILE *fp=fopen(bmpName,"rb");//二进制读方式打开指定的图像文件 if(fp==0) return 0; //跳过位图文件头结构BITMAPFILEHEADER fseek(fp, sizeof(BITMAPFILEHEADER),0); //定义位图信息头结构变量,读取位图信息头进内存,存放在变量head中 BITMAPINFOHEADER head; fread(&head, sizeof(BITMAPINFOHEADER), 1,fp); //获取图像宽、高、每像素所占位数等信息 bmpWidth = head.biWidth; bmpHeight = head.biHeight; biBitCount = head.biBitCount;//定义变量,计算图像每行像素所占的字节数(必须是4的倍数) int lineByte=(bmpWidth * biBitCount/8+3)/4*4;//灰度图像有颜色表,且颜色表表项为256 if(biBitCount==8) { //申请颜色表所需要的空间,读颜色表进内存 pColorTable=new RGBQUAD[256]; fread(pColorTable,sizeof(RGBQUAD),256,fp); } //申请位图数据所需要的空间,读位图数据进内存 pBmpBuf=new unsigned char[lineByte * bmpHeight]; fread(pBmpBuf,1,lineByte * bmpHeight,fp); fclose(fp);//关闭文件 return 1;//读取文件成功 } //----------------------------------------------------------------------------------------- //给定一个图像位图数据、宽、高、颜色表指针及每像素所占的位数等信息,将其写到指定文件中 bool saveBmp(char *bmpName, unsigned char *imgBuf, int width, int height, int biBitCount, RGBQUAD *pColorTable) { //如果位图数据指针为0,则没有数据传入,函数返回 if(!imgBuf) return 0; //颜色表大小,以字节为单位,灰度图像颜色表为1024字节,彩色图像颜色表大小为0 int colorTablesize=0; if(biBitCount==8) colorTablesize=1024; //待存储图像数据每行字节数为4的倍数 int lineByte=(width * biBitCount/8+3)/4*4; //以二进制写的方式打开文件 FILE *fp=fopen(bmpName,"wb"); if(fp==0) return 0; //申请位图文件头结构变量,填写文件头信息 BITMAPFILEHEADER fileHead; fileHead.bfType = 0x4D42;//bmp类型 //bfSize是图像文件4个组成部分之和 fileHead.bfSize= sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER) + colorTablesize + lineByte*height; fileHead.bfReserved1 = 0; fileHead.bfReserved2 = 0; //bfOffBits是图像文件前3个部分所需空间之和 fileHead.bfOffBits=54+colorTablesize; //写文件头进文件 fwrite(&fileHead, sizeof(BITMAPFILEHEADER),1, fp); //申请位图信息头结构变量,填写信息头信息 BITMAPINFOHEADER head; head.biBitCount=biBitCount; head.biClrImportant=0; head.biClrUsed=0; head.biCompression=0; head.biHeight=height; head.biPlanes=1; head.biSize=40; head.biSizeImage=lineByte*height; head.biWidth=width; head.biXPelsPerMeter=0; head.biYPelsPerMeter=0; //写位图信息头进内存 fwrite(&head, sizeof(BITMAPINFOHEADER),1, fp); //如果灰度图像,有颜色表,写入文件 if(biBitCount==8) fwrite(pColorTable, sizeof(RGBQUAD),256, fp); //写位图数据进文件 fwrite(imgBuf, height*lineByte, 1, fp); //关闭文件 fclose(fp); return 1; } //---------------------------------------------------------------------------------------- //以下为像素的读取函数 void doIt() { //读入指定BMP文件进内存 char readPath[]="nv.BMP"; readBmp(readPath); //输出图像的信息 cout<<"width="<<bmpWidth<<" height="<<bmpHeight<<" biBitCount="<<biBitCount<<endl; //循环变量,图像的坐标 //每行字节数 int lineByte=(bmpWidth*biBitCount/8+3)/4*4; //循环变量,针对彩色图像,遍历每像素的三个分量 int m=0,n=0,count_xiang_su=0; //将图像左下角1/4部分置成黑色 ofstream outfile("图像像素.txt",ios::in|ios::trunc); if(biBitCount==8) //对于灰度图像 { //------------------------------------------------------------------------------------ //以下完成图像的分割成8*8小单元,并把像素值存储到指定文本中。由于BMP图像的像素数据是从 //左下角:由左往右,由上往下逐行扫描的 int L1=0; int hang=63; int lie=0; //int L2=0; //int fen_ge=8; for(int fen_ge_hang=0;fen_ge_hang<8;fen_ge_hang++)//64*64矩阵行循环 { for(int fen_ge_lie=0;fen_ge_lie<8;fen_ge_lie++)//64*64列矩阵循环 { //-------------------------------------------- for(L1=hang;L1>hang-8;L1--)//8*8矩阵行 { for(int L2=lie;L2<lie+8;L2++)//8*8矩阵列 { m=*(pBmpBuf+L1*lineByte+L2); outfile<<m<<" "; count_xiang_su++; if(count_xiang_su%8==0)//每8*8矩阵读入文本文件 { outfile<<endl; } } } //--------------------------------------------- hang=63-fen_ge_hang*8;//64*64矩阵行变换 lie+=8;//64*64矩阵列变换 //该一行(64)由8个8*8矩阵的行组成 } hang-=8;//64*64矩阵的列变换 lie=0;//64*64juzhen } } //double xiang_su[2048]; //ofstream outfile("xiang_su_zhi.txt",ios::in|ios::trunc); if(!outfile) { cout<<"open error!"<<endl; exit(1); } else if(biBitCount==24) {//彩色图像 for(int i=0;i<bmpHeight;i++) { for(int j=0;j<bmpWidth;j++) { for(int k=0;k<3;k++)//每像素RGB三个分量分别置0才变成黑色 { //*(pBmpBuf+i*lineByte+j*3+k)-=40; m=*(pBmpBuf+i*lineByte+j*3+k); outfile<<m<<" "; count_xiang_su++; if(count_xiang_su%8==0) { outfile<<endl; } //n++; } n++; } } cout<<"总的像素个素为:"<<n<<endl; cout<<"----------------------------------------------------"<<endl; } //将图像数据存盘 char writePath[]="nvcpy.BMP";//图片处理后再存储 saveBmp(writePath, pBmpBuf, bmpWidth, bmpHeight, biBitCount, pColorTable); //清除缓冲区,pBmpBuf和pColorTable是全局变量,在文件读入时申请的空间 delete []pBmpBuf; if(biBitCount==8) delete []pColorTable; } void main() { doIt(); }