• mysql数据库索引相关


    一 介绍

    什么是索引?

    索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能
    非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要。
    索引优化应该是对查询性能优化最有效的手段了。索引能够轻易将查询性能提高好几个数量级。
    索引相当于字典的音序表,如果要查某个字,如果不使用音序表,则需要从几百页中逐页去查。

    (建索引是让mysql提供的一种数据结构)

    索引相关见解

    索引是应用程序设计和开发的一个重要方面。若索引太多,应用程序的性能可能会受到影响。而索引太少,对查询性能又会产生影响,要找到一个平衡点,这对应用程序的性能至关重要。一些开发人员总是在事后才想起添加索引----我一直认为,这源于一种错误的开发模式。如果知道数据的使用,从一开始就应该在需要处添加索引。开发人员往往对数据库的使用停留在应用的层面,比如编写SQL语句、存储过程之类,他们甚至可能不知道索引的存在,或认为事后让相关DBA加上即可。DBA往往不够了解业务的数据流,而添加索引需要通过监控大量的SQL语句进而从中找到问题,这个步骤所需的时间肯定是远大于初始添加索引所需的时间,并且可能会遗漏一部分的索引。当然索引也并不是越多越好,我曾经遇到过这样一个问题:某台MySQL服务器iostat显示磁盘使用率一直处于100%,经过分析后发现是由于开发人员添加了太多的索引,在删除一些不必要的索引之后,磁盘使用率马上下降为20%。可见索引的添加也是非常有技术含量的。

    二、索引的原理

    索引的目的在于提高查询效率。

    本质:通过不断的缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。

    三、 索引的数据结构

    需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生(B+树是通过二叉查找树,再由平衡二叉树,B树演化而来)。

    如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

    b+树的查找过程
    如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。
    b+树的查找过程
    b+树性质
    1.索引字段要尽量的小:通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。
    2.索引的最左匹配特性:当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。
    b+树性质

    b+树性质

    1、索引字段要尽量的小

    2、索引的最左匹配特性

    三、常见的索引

    索引分类:

    1、普通索引INDEX:加速查找

      唯一索引:
    2、-主键索引PRIMARY KEY:加速查找+约束(不为空、不能重复)
    3、-唯一索引UNIQUE:加速查找+约束(不能重复)
    4、-组合索引

      组合索引是将n个列组合成一个索引

    create table in3(
        nid int not null auto_increment primary key,
        name varchar(32) not null,
        email varchar(64) not null,
        extra text
    )
    创建表
    创建组合索引

    5、联合索引:

        -PRIMARY KEY(id,name):联合主键索引
        -UNIQUE(id,name):联合唯一索引
        -INDEX(id,name):联合普通索引

    除此之外还有全文索引,即FULLTEXT,但其实对于全文搜索,我们并不会使用MySQL自带的该索引,而是会选择第三方软件如Sphinx,专门来做全文搜索。

    二、索引类型

      索引主要包括hash和btree两大类型,我们在创建索引时可以为其指定索引类型。其中hash类型的索引:查询单条快,范围查询慢;btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它)

    #不同的存储引擎支持的索引类型也不一样
    InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
    MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
    Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
    NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
    Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;

    三、创建与删除索引

    1、在创建表时创建索引

    create table t1(
        id int,
        name char(5),
        age int,
        unique key uni_name(name),    # uni_name 为索引名      
        index index_age(age),         # index_age 为索引名,不需要key
        primary key(id)               # primary 不需要起索引名,起了也不显示     
         );

    2、创建完表后为其添加索引

    3、删除索引

    drop index indx_id on t3;
    
    alter table t3 drop primary key;

      上述第一个删除语法中,因primary key 没有名字,所以删除方式为:drop index ‘primary’ on t3,其他有名字的索引删除方式为:drop index 索引名 on 表名

    四、测试索引

      按照如下sql语句创建表s1,后续所有测试均基于此表:

    #1. 准备表
    create table s1(
    id int,
    name varchar(20),
    gender char(6),
    email varchar(50)
    );
    
    #2. 创建存储过程,实现批量插入记录
    delimiter $$ #声明存储过程的结束符号为$$
    create procedure auto_insert1()
    BEGIN
        declare i int default 1;
        while(i<3000000)do
            insert into s1 values(i,'egon','male',concat('egon',i,'@oldboy'));
            set i=i+1;
        end while;
    END$$ #$$结束
    delimiter ; #重新声明分号为结束符号
    
    #3. 查看存储过程
    show create procedure auto_insert1G 
    
    #4. 调用存储过程
    call auto_insert1();

    1、加索引可以加快查询效率,但是会降低写的效率

     五、正确使用索引

      但我们必须知道,并不是说我们创建了索引就一定会加快查询速度,若想利用索引达到预想的提高查询速度的效果,我们在添加索引时,必须遵循以下问题。

    1、范围问题,或者说条件不明确,条件中出现这些符号或关键字:>、>=、<、<=、!= 、between...and...、like

      大于 小于

     

    不等于

    between...and

     like

     2、尽量选择区分度高的字段作为索引,区分度是指的字段中数据的重复性,越重复,区分度变低

     

    我们编写存储过程为表s1批量添加记录,name字段的值均为egon,也就是说name这个字段的区分度很低(gender字段也是一样的,我们稍后再搭理它)
    
    回忆b+树的结构,查询的速度与树的高度成反比,要想将树的高低控制的很低,需要保证:在某一层内数据项均是按照从左到右,从小到大的顺序依次排开,即左1<左2<左3<...
    
    而对于区分度低的字段,无法找到大小关系,因为值都是相等的,毫无疑问,还想要用b+树存放这些等值的数据,只能增加树的高度,字段的区分度越低,则树的高度越高。极端的情况,索引字段的值都一样,那么b+树几乎成了一根棍。本例中就是这种极端的情况,name字段所有的值均为'egon'
    
    #现在我们得出一个结论:为区分度低的字段建立索引,索引树的高度会很高,然而这具体会带来什么影响呢???
    
    #1:如果条件是name='xxxx',那么肯定是可以第一时间判断出'xxxx'是不在索引树中的(因为树中所有的值均为'egon’),所以查询速度很快
    
    #2:如果条件正好是name='egon',查询时,我们永远无法从树的某个位置得到一个明确的范围,只能往下找,往下找,往下找。。。这与全表扫描的IO次数没有多大区别,所以速度很慢

    3、索引字段不可以参与计算

     

    and  or

    #注意:
    条件1 and 条件2:查询原理是:首先条件1与条件2都成立的前提下,才算匹配成功一条记录;其次mysql会按先优先判断索引字段的条件,如果按照该条件为真,但锁定的范围很小,或者干脆为假,那我们即便是没有为其他条件的字段添加索引,最终的结果仍然很快
    
    #例如:
    若条件1的字段有索引,而条件2的字段没有索引,那么如果在按照条件1查出的结果很少的情况下,即便我们没有为条件2创建索引,最终的查询速度依然很快
    
    若条件1的字段没有索引,而条件2的字段有索引,那么如果在按照条件2查出的结果很少的情况下,即便我们没有为条件1创建索引,最终的查询速度依然很快

      在左边条件成立但是索引字段的区分度低的情况下(name与gender均属于这种情况),会依次往右找到一个区分度高的索引字段,加速查询

     

      在左边条件成立但是索引字段的区分度低的情况下(name与gender均属于这种情况),会依次往右找到一个区分度高的索引字段,加速查询

     经过分析,在条件为name='egon' and gender='male' and id>333 and email='xxx'的情况下,我们完全没必要为前三个条件的字段加索引,因为只能用上email字段的索引,前三个字段的索引反而会降低我们的查询效率。

     5、最左前缀匹配原则,非常重要的原则,对于组合索引mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配(指的是范围大了,有索引速度也慢),比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

    6、其他情况

    - 使用函数
        select * from tb1 where reverse(email) = 'egon';
                
    - 类型不一致
        如果列是字符串类型,传入条件是必须用引号引起来,不然...
        select * from tb1 where email = 999;
        
    #排序条件为索引,则select字段必须也是索引字段,否则无法命中
    - order by
        select name from s1 order by email desc;
        当根据索引排序时候,select查询的字段如果不是索引,则速度仍然很慢
        select email from s1 order by email desc;
        特别的:如果对主键排序,则还是速度很快:
            select * from tb1 order by nid desc;
     
    - 组合索引最左前缀
        如果组合索引为:(name,email)
        name and email       -- 命中索引
        name                 -- 命中索引
        email                -- 未命中索引
    
    
    - count(1)或count(列)代替count(*)在mysql中没有差别了
    
    - create index xxxx  on tb(title(19)) #text类型,必须制定长度
    - 避免使用select *
    - count(1)或count(列) 代替 count(*)
    - 创建表时尽量时 char 代替 varchar
    - 表的字段顺序固定长度的字段优先
    - 组合索引代替多个单列索引(经常使用多个条件查询时)
    - 尽量使用短索引
    - 使用连接(JOIN)来代替子查询(Sub-Queries)
    - 连表时注意条件类型需一致
    - 索引散列值(重复少)不适合建索引,例:性别不适合

    六、索引合并与覆盖

    1、索引合并

    #覆盖索引:
        - 所有字段(条件的,查询结果的等)都是索引字段
        http://blog.itpub.net/22664653/viewspace-774667/
    
    #分析
    select age from s1 where id=123 and name = 'egon'; #id字段有索引,但是name字段没有索引
    该sql命中了索引,但未覆盖全部。
    利用id=123到索引的数据结构中定位到了id字段,但是仍要判断name字段,但是name字段没有索引,而且查询结果的字段age也没有索引
    最牛逼的情况是,索引字段覆盖了所有,那全程通过索引来加速查询以及获取结果就ok了

    七、查询优化神器explain

      关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网explain-output,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。

    八、慢日志管理

    慢日志
                - 执行时间 > 10
                - 未命中索引
                - 日志文件路径
                
            配置:
                - 内存
                    show variables like '%query%';
                    show variables like '%queries%';
                    set global 变量名 =- 配置文件
                    mysqld --defaults-file='E:wupeiqimysql-5.7.16-winx64mysql-5.7.16-winx64my-default.ini'
                    
                    my.conf内容:
                        slow_query_log = ON
                        slow_query_log_file = D:/....
                        
                    注意:修改配置文件之后,需要重启服务
    View Code
    MySQL日志管理
    ========================================================
    错误日志: 记录 MySQL 服务器启动、关闭及运行错误等信息
    二进制日志: 又称binlog日志,以二进制文件的方式记录数据库中除 SELECT 以外的操作
    查询日志: 记录查询的信息
    慢查询日志: 记录执行时间超过指定时间的操作
    中继日志: 备库将主库的二进制日志复制到自己的中继日志中,从而在本地进行重放
    通用日志: 审计哪个账号、在哪个时段、做了哪些事件
    事务日志或称redo日志: 记录Innodb事务相关的如事务执行时间、检查点等
    ========================================================
    一、bin-log
    1. 启用
    # vim /etc/my.cnf
    [mysqld]
    log-bin[=dir[filename]]
    # service mysqld restart
    2. 暂停
    //仅当前会话
    SET SQL_LOG_BIN=0;
    SET SQL_LOG_BIN=1;
    3. 查看
    查看全部:
    # mysqlbinlog mysql.000002
    按时间:
    # mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56"
    # mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54"
    # mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 
    
    按字节数:
    # mysqlbinlog mysql.000002 --start-position=260
    # mysqlbinlog mysql.000002 --stop-position=260
    # mysqlbinlog mysql.000002 --start-position=260 --stop-position=930
    4. 截断bin-log(产生新的bin-log文件)
    a. 重启mysql服务器
    b. # mysql -uroot -p123 -e 'flush logs'
    5. 删除bin-log文件
    # mysql -uroot -p123 -e 'reset master' 
    
    
    二、查询日志
    启用通用查询日志
    # vim /etc/my.cnf
    [mysqld]
    log[=dir[filename]]
    # service mysqld restart
    
    三、慢查询日志
    启用慢查询日志
    # vim /etc/my.cnf
    [mysqld]
    log-slow-queries[=dir[filename]]
    long_query_time=n
    # service mysqld restart
    MySQL 5.6:
    slow-query-log=1
    slow-query-log-file=slow.log
    long_query_time=3
    查看慢查询日志
    测试:BENCHMARK(count,expr)
    SELECT BENCHMARK(50000000,2*3);
    
    日志管理
  • 相关阅读:
    模仿outlook快捷方式栏的一个控件
    买了一本书《Programming pearls》编程珠玑(88上的数学题目(1))
    一个IE动画图标的小例子
    对水波特效实现原理的解释
    向量空间的几何变换
    一个简单Led控件
    【转载】配置(visual studio.net已检测到指定的web服务器运行的不是asp.net1.1版)
    最近学习ASP2.0相关的几个小问题(非创新性文章)
    一道c的面试题,大数相乘。
    Led控件(2)——Led显示屏模拟
  • 原文地址:https://www.cnblogs.com/jassin-du/p/8068117.html
Copyright © 2020-2023  润新知