• POJ_1050_(dp)


    To the Max
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 48232   Accepted: 25534

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15

    给一个矩阵,求其子矩阵所有元素加和的最大值。。。

    没想到n^4的复杂度能过。。。

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    #define N 105
    #define INF 999999999
    
    int num[N][N];
    int dpUL[N][N];
    int main()
    {
        int n;
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
                scanf("%d",&num[i][j]);
        int res=-INF;
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
            {
                dpUL[i][j]=dpUL[i-1][j]+dpUL[i][j-1]-dpUL[i-1][j-1]+num[i][j];
                res=max(res,dpUL[i][j]);
                for(int r=0; r<i; r++)
                {
                    for(int c=0; c<j; c++)
                        res=max(res,dpUL[i][j]-dpUL[i][c]-dpUL[r][j]+dpUL[r][c]);
                }
            }
        printf("%d
    ",res);
        return 0;
    }
    /*
    -1 -1 -1 -1
    -1 2 2 -1
    -1 2 2 -1
    -1 -1 -1 -1
    */
    
    
  • 相关阅读:
    git简单使用命令
    localStorage的用法
    CSS3 进阶
    ASP.NET应用程序与页面生命周期
    IT专业人士如何更有效的学习专业知识
    jsonp跨域原理解析
    sql注入原理
    ajax跨域调用
    aspx、ashx以及cs的关系,viewState
    Js处理json数据
  • 原文地址:https://www.cnblogs.com/jasonlixuetao/p/6595523.html
Copyright © 2020-2023  润新知