• leetcode_919. Complete Binary Tree Inserter_完全二叉树插入


    https://leetcode.com/problems/complete-binary-tree-inserter/

    给出树节点的定义和完全二叉树插入器类的定义,为这个类补全功能。完全二叉树的定义为:这颗二叉树除最后一层外左右层的节点都是满的(对于第i层有2^(i-1)个节点),最后一层节点都出现在尽量靠左的位置。

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class CBTInserter {
    public:
        CBTInserter(TreeNode* root) {}
        int insert(int v) {}
        TreeNode* get_root() {}
    };
    /**
     * Your CBTInserter object will be instantiated and called as such:
     * CBTInserter* obj = new CBTInserter(root);
     * int param_1 = obj->insert(v);
     * TreeNode* param_2 = obj->get_root();

    解法一:

    我的思路是,先遍历给定二叉树,得到树的深度maxlayer和最后一层的节点数numoflastlayer。若numoflastlayer<2^(maxlayer-1),则新节点插入在第layer=maxlayer层;若numoflastlayer=2^(maxlayer-1),说明最后一层满了,需要插入到第layer=maxlayer+1层。再先序遍历这棵树,遍历到第layer-1层的节点时,判断:若节点只有左节点,则将新节点作为其右孩子;若节点无子节点,则将新节点作为其左孩子。

    class CBTInserter
    {
    public:
        void preorder(TreeNode* root,int layer)
        {
            if(layer>maxlayer)
            {
                maxlayer = layer;
                numoflastlayer = 1;
            }
            else if(layer == maxlayer)
                numoflastlayer++;
            if(root->left!=NULL)
                preorder(root->left, layer+1);
            if(root->right!=NULL)
                preorder(root->right, layer+1);
        }
        CBTInserter(TreeNode* root)
        {
            root_ =root;
            maxlayer=-1;
            numoflastlayer=0;
            preorder(root,0);
        }
    
        TreeNode* Insert(TreeNode* root, int v, int layer, int insertlayer)
        {
            if(layer == insertlayer-1)
            {
                if(root->left == NULL)
                {
                    root->left = new TreeNode(v);
                    return root;
                }
                else if(root->right == NULL)
                {
                    root->right = new TreeNode(v);
                    return root;
                }
            }
            else
            {
                TreeNode* res = Insert(root->left, v, layer+1, insertlayer);
                if(res == NULL)
                    res = Insert(root->right, v, layer+1, insertlayer);
                return res;
            }
            return NULL;
        }
    
        int insert(int v)
        {
            cout<<v<<endl;
            int maxnumoflastlayer = pow(2, maxlayer);
            TreeNode* res = NULL;
            if(numoflastlayer<maxnumoflastlayer)
            {
                res = Insert(root_,v,0, maxlayer);
                numoflastlayer++;
            }
            else
            {
                res = Insert(root_,v,0,maxlayer+1);
                maxlayer++;
                numoflastlayer=1;
            }
            return res->val;
        }
    
        TreeNode* get_root()
        {
            return root_;
        }
    private:
        TreeNode* root_;
        int maxlayer;
        int numoflastlayer;
    };

    解法二:新节点插入的位置的父节点的子节点数要么为1,要么为0。根据层次遍历,把节点子节点数为0或1的节点存入队列。插入时,取队头节点,若该节点有左孩子,则将新节点作为其右孩子,并将该左右孩子压入队尾,将该队头节点出队;若该节点无孩子,则将新节点作为其左孩子,该节点仍然作为队头节点。

    class CBTInserter
    {
    public:
        TreeNode* root_;
        queue<TreeNode*> nodes_0_1;
        CBTInserter(TreeNode* root)
        {
            root_ = root;
            queue<TreeNode*> que;
            que.push(root);
            while(!que.empty())
            {
                TreeNode* now = que.front();
                que.pop();
                if(now->left == NULL)
                    nodes_0_1.push(now);
                else if(now->right == NULL)
                    nodes_0_1.push(now);
                else
                {
                    que.push(now->left);
                    que.push(now->right);
                }
            }
        }
    
        int insert(int v)
        {
            TreeNode* root = nodes_0_1.front();
            if(root->left!=NULL)
            {
                root->right = new TreeNode(v);
                nodes_0_1.pop();
                nodes_0_1.push(root->left);
                nodes_0_1.push(root->right);
            }
            else
                root->left = new TreeNode(v);
            return root->val;
        }
    
        TreeNode* get_root()
        {
            return root_;
        }
    };
  • 相关阅读:
    MySQL轻量级监测工具—doDBA
    MySQL构建百万级数据
    MySQL备份与恢复—xtrabackup
    MySQL8.0.15二进制包安装
    「考试」省选51
    「总结」二次剩余
    「考试」省选50
    「总结」$pdf$课:$dp2$
    「考试」省选49
    「考试」省选48
  • 原文地址:https://www.cnblogs.com/jasonlixuetao/p/10747141.html
Copyright © 2020-2023  润新知