• seq2seq 函数


    # 复制

    tf.contrib.layers.embed_sequence


    链接:https://www.tensorflow.org/api_docs/python/tf/contrib/layers/embed_sequence

    说明:对序列数据执行embedding操作,输入[batch_size, sequence_length]的tensor,返回[batch_size, sequence_length, embed_dim]的tensor。

    例子:

      features = [[1,2,3],[4,5,6]]

      outputs = tf.contrib.layers.embed_sequence(features, vocab_size, embed_dim)

      # 如果embed_dim=4,输出结果为

      [

      [[0.1,0.2,0.3,0.1],[0.2,0.5,0.7,0.2],[0.1,0.6,0.1,0.2]],

      [[0.6,0.2,0.8,0.2],[0.5,0.6,0.9,0.2],[0.3,0.9,0.2,0.2]]

      ]

    tf.strided_slice


    链接:https://www.tensorflow.org/api_docs/python/tf/strided_slice

    说明:对传入的tensor执行切片操作,返回切片后的tensor。主要参数input_, start, end, strides,strides代表切片步长。

    例子:

      # 'input' is [[[1, 1, 1], [2, 2, 2]],

      #            [[3, 3, 3], [4, 4, 4]],

      #            [[5, 5, 5], [6, 6, 6]]]

      tf.strided_slice(input, [1, 0, 0], [2, 1, 3], [1, 1, 1]) ==> [[[3, 3, 3]]]

      # 上面一行代码中[1,0,0]分别代表原数组三个维度的切片起始位置,[2,1,3]代表结束位置。

      [1,1,1]代表切片步长,表示在三个维度上切片步长都为1。我们的原始输入数据为3 x 2 x 3,

      通过参数我们可以得到,第一个维度上切片start=1,end=2,

      第二个维度start=0, end=1,第三个维度start=0, end=3。

      我们从里面的维度来看,原始数据的第三个维度有三个元素,切片操作start=0,end=3,stride=1,代表第三个维度上的元素我们全部保留。

      同理,在第二个维度上,start=0, end=1, stride=1,代表第二个维度上只保留第一个切片,这样我们就只剩下[[[1,1,1]],[[3,3,3]],[[5,5,5]]]。

      接着我们看第一个维度,start=1, end=2, stride=1代表只取第二个切片,因此得到[[[3,3,3]]。以下两个例子同理。

      tf.strided_slice(input, [1, 0, 0], [2, 2, 3], [1, 1, 1]) 

    ==> [[[3, 3, 3],

            [4, 4, 4]]]

      tf.strided_slice(input, [1, -1, 0], [2, -3, 3], [1, -1, 1])

     ==>[[[4, 4, 4],

            [3, 3, 3]]]

    tf.contrib.rnn.MultiRNNCell


    链接:https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell

    说明:对RNN单元按序列堆叠。接受参数为一个由RNN cell组成的list。

    例子:

      # rnn_size代表一个rnn单元中隐层节点数量,layer_nums代表堆叠的rnn cell个数

      lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)

      composed_cell = tf.contrib.rnn.MultiRNNCell([lstm for _ in range(num_layers)])

      # 上面这种写法在tensorflow1.0中是可以运行的,但在tensorflow1.1版本中,以上构造的lstm单元不允许复用,要重新生成新的对象,因此在源码中,函数中嵌套了一个定义cell的函数,从而保证每次生成新的对象实例。

      def get_lstm(rnn_size):

      lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)

      return lstm

      composed_cell = tf.contrib.rnn.MultiRNNCell([get_lstm(rnn_size) for _ in range(num_layers)])

    tf.nn.dynamic_rnn


    链接:https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn

    说明:构建RNN,接受动态输入序列。返回RNN的输出以及最终状态的tensor。dynamic_rnn与rnn的区别在于,dynamic_rnn对于不同的batch,可以接收不同的sequence_length,例如,第一个batch是[batch_size,10],第二个batch是[batch_size,20]。而rnn只能接收定长的sequence_length。

    例子:

      output, state = tf.nn.dynamic_rnn(cell, inputs)

    tf.tile


    链接:https://www.tensorflow.org/api_docs/python/tf/tile

    说明:对输入的tensor进行复制,返回复制后的tensor。主要参数是input和multiples。

    例子:

      # 伪代码

      input = [a, b, c, d]

      output = tf.tile(input, 2)

      # output = [a, b, c, d, a, b, c, d]

      input = [[1,2,3], [4,5,6]]

      output = tf.tile(input, [2, 3])

      # output = [[1,2,3,1,2,3,1,2,3],

        [4,5,6,4,5,6,4,5,6],

        [1,2,3,1,2,3,1,2,3],

        [4,5,6,4,5,6,4,5,6]]

    tf.fill


    链接:https://www.tensorflow.org/api_docs/python/tf/fill

    说明:主要参数为dims和value,构造一个由value填充的形状为dims的tensor。

    例子:

      tf.fill([2,3],9) => [[9,9,9],[9,9,9]]

    tf.contrib.seq2seq.TrainingHelper


    链接:https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/TrainingHelper

    说明:Decoder端用来训练的函数。这个函数不会把t-1阶段的输出作为t阶段的输入,而是把target中的真实值直接输入给RNN。主要参数是inputs和sequence_length。返回helper对象,可以作为BasicDecoder函数的参数。

    例子:

      training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=decoder_embed_input,

                                                      sequence_length=target_sequence_length,

                                                      time_major=False)

    tf.contrib.seq2seq.BasicDecoder


    链接:https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/BasicDecoder

    说明:生成基本解码器对象

    例子:

      # cell为RNN层,training_helper是由TrainingHelper生成的对象,

      encoder_state是RNN的初始状态tensor,

      output_layer代表输出层,它是一个tf.layers.Layer的对象。

      training_decoder = tf.contrib.seq2seq.BasicDecoder(cell,

                                                    training_helper,

                                                    encoder_state,

                                                    output_layer)

    tf.contrib.seq2seq.dynamic_decode


    链接:https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/dynamic_decode

    说明:对decoder执行dynamic decoding。通过maximum_iterations参数定义最大序列长度。

    tf.contrib.seq2seq.GreedyEmbeddingHelper


    链接:https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/GreedyEmbeddingHelper

    说明:它和TrainingHelper的区别在于它会把t-1下的输出进行embedding后再输入给RNN。

    tf.sequence_mask


    链接:https://www.tensorflow.org/api_docs/python/tf/sequence_mask

    说明:对tensor进行mask,返回True和False组成的tensor

    例子:

      # 伪代码

      tf.sequence_mask([1,3,2],5) =>

      [[True, False, False, False, False],

      [True, True, True, False, False],

      [True, True, False, False, False]]

      # 其中dtype默认是tf.bool,在我们的代码中使用tf.float32,这是为后面计算loss生成权重。

    tf.contrib.seq2seq.sequence_loss


    链接:https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/sequence_loss

    说明:对序列logits计算加权交叉熵。

    例子:

      # training_logits是输出层的结果,targets是目标值,masks是我们使用tf.sequence_mask计算的结果,在这里作为权重,也就是说我们在计算交叉熵时不会把<PAD>计算进去。

      cost = tf.contrib.seq2seq.sequence_loss(

      training_logits,

      targets,

      masks)

  • 相关阅读:
    UML-如何画操作契约?
    UML-操作契约是什么?
    UML-SSD总结
    UML-如何画SSD?
    UML-SSD-为什么要画SSD?
    UML-SSD-定义
    系统幂等性设计
    UML-领域模型-例子与总结
    UML-领域模型-属性
    UML-领域模型-添加关联和属性
  • 原文地址:https://www.cnblogs.com/jamnoble/p/11587108.html
Copyright © 2020-2023  润新知