Recommender.recommend(uid, RECOMMENDER_NUM, rescorer);
Recommender.recommend(long userID,
int howMany, IDRescorer rescorer): 获得推荐结果,给userID推荐howMany个Item,凡rescorer中包含的Item都过滤掉。
其中源码中调用了以下方法 TopItems.getTopItems
TopItems类的.getTopItems
public static List<RecommendedItem> getTopItems(int howMany, LongPrimitiveIterator possibleItemIDs, IDRescorer rescorer, Estimator<Long> estimator) throws TasteException { Preconditions.checkArgument(possibleItemIDs != null, "argument is null"); Preconditions.checkArgument(estimator != null, "argument is null"); Queue<RecommendedItem> topItems = new PriorityQueue<RecommendedItem>(howMany + 1, Collections.reverseOrder(ByValueRecommendedItemComparator.getInstance())); boolean full = false; double lowestTopValue = Double.NEGATIVE_INFINITY; while (possibleItemIDs.hasNext()) { long itemID = possibleItemIDs.next(); if (rescorer == null || !rescorer.isFiltered(itemID)) { double preference; try { preference = estimator.estimate(itemID); } catch (NoSuchItemException nsie) { continue; } double rescoredPref = rescorer == null ? preference : rescorer.rescore(itemID, preference); if (!Double.isNaN(rescoredPref) && (!full || rescoredPref > lowestTopValue)) { topItems.add(new GenericRecommendedItem(itemID, (float) rescoredPref)); if (full) { topItems.poll(); } else if (topItems.size() > howMany) { full = true; topItems.poll(); } lowestTopValue = topItems.peek().getValue(); } } } int size = topItems.size(); if (size == 0) { return Collections.emptyList(); } List<RecommendedItem> result = Lists.newArrayListWithCapacity(size); result.addAll(topItems); Collections.sort(result, ByValueRecommendedItemComparator.getInstance()); return result; }
recommend(long userID, int howMany): 获得推荐结果,给userID推荐howMany个Item
estimatePreference(long userID, long itemID): 当打分为空,估计用户对物品的打分
setPreference(long userID, long itemID, float value): 赋值用户,物品,打分
removePreference(long userID, long itemID): 删除用户对物品的打分
getDataModel(): 提取推荐数据
版权声明:本文为博主原创文章,未经博主允许不得转载。