• 反制面试官 | 14张原理图 | 再也不怕被问 volatile!


    反制面试官 | 14张原理图 | 再也不怕被问 volatile!

    悟空
    爱学习的程序猿,自主开发了Java学习平台、PMP刷题小程序。目前主修Java、多线程、SpringBoot、SpringCloud、k8s。本公众号不限于分享技术,也会分享工具的使用、人生感悟、读书总结。

    絮叨

    这一篇也算是Java并发编程的开篇,看了很多资料,但是轮到自己去整理去总结的时候,发现还是要多看几遍资料才能完全理解。还有一个很重要的点就是,画图是加深印象和检验自己是否理解的一个非常好的方法。

    一、Volatile怎么念?

    volatile怎么念

    看到这个单词一直不知道怎么发音

    英 [ˈvɒlətaɪl]  美 [ˈvɑːlətl]
    
    adj. [化学] 挥发性的;不稳定的;爆炸性的;反复无常的
    

    那Java中volatile又是干啥的呢?

    二、Java中volatile用来干啥?

    • Volatile是Java虚拟机提供的轻量级的同步机制(三大特性)
      • 保证可见性
      • 不保证原子性
      • 禁止指令重排

    要理解三大特性,就必须知道Java内存模型(JMM),那JMM又是什么呢?

    volatile怎么念

    三、JMM又是啥?

    这是一份精心总结的Java内存模型思维导图,拿去不谢。

    拿走不谢

    原理图1-Java内存模型

    3.1 为什么需要Java内存模型?

    Why:屏蔽各种硬件和操作系统的内存访问差异

    JMM是Java内存模型,也就是Java Memory Model,简称JMM,本身是一种抽象的概念,实际上并不存在,它描述的是一组规则或规范,通过这组规范定义了程序中各个变量(包括实例字段,静态字段和构成数组对象的元素)的访问方式。

    3.2 到底什么是Java内存模型?

    • 1.定义程序中各种变量的访问规则
    • 2.把变量值存储到内存的底层细节
    • 3.从内存中取出变量值的底层细节

    3.3 Java内存模型的两大内存是啥?

    原理图2-两大内存

    • 主内存
      • Java堆中对象实例数据部分
      • 对应于物理硬件的内存
    • 工作内存
      • Java栈中的部分区域
      • 优先存储于寄存器和高速缓存

    3.4 Java内存模型是怎么做的?

    Java内存模型的几个规范:

    • 1.所有变量存储在主内存

    • 2.主内存是虚拟机内存的一部分

    • 3.每条线程有自己的工作内存

    • 4.线程的工作内存保存变量的主内存副本

    • 5.线程对变量的操作必须在工作内存中进行

    • 6.不同线程之间无法直接访问对方工作内存中的变量

    • 7.线程间变量值的传递均需要通过主内存来完成

    由于JVM运行程序的实体是线程,而每个线程创建时JVM都会为其创建一个工作内存(有些地方称为栈空间),工作内存是每个线程的私有数据区域,而Java内存模型中规定所有变量都存储在主内存,主内存是共享内存区域,所有线程都可以访问,但线程对变量的操作(读取赋值等)必须在工作内存中进行,首先要将变量从主内存拷贝到自己的工作内存空间,然后对变量进行操作,操作完成后再将变量写会主内存,不能直接操作主内存中的变量,各个线程中的工作内存中存储着主内存中的变量副本拷贝,因此不同的线程间无法访问对方的工作内存,线程间的通信(传值)必须通过主内存来完成,其简要访问过程:

    原理图3-Java内存模型

    3.5 Java内存模型的三大特性

    • 可见性(当一个线程修改了共享变量的值时,其他线程能够立即得知这个修改)
    • 原子性(一个操作或一系列操作是不可分割的,要么同时成功,要么同时失败)
    • 有序性(变量赋值操作的顺序与程序代码中的执行顺序一致)

    关于有序性:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句是指“线程内似表现为串行的语义”(Within-Thread As-If-Serial Semantics),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。

    四、能给个示例说下怎么用volatile的吗?

    考虑一下这种场景:

    有一个对象的字段number初始化值=0,另外这个对象有一个公共方法setNumberTo100()可以设置number = 100,当主线程通过子线程来调用setNumberTo100()后,主线程是否知道number值变了呢?

    答案:如果没有使用volatile来定义number变量,则主线程不知道子线程更新了number的值。

    (1)定义如上述所说的对象:ShareData

    class ShareData {
        int number = 0;
    
        public void setNumberTo100() {
            this.number = 100;
        }
    }
    

    (2)主线程中初始化一个子线程,名字叫做子线程

    子线程先休眠3s,然后设置number=100。主线程不断检测的number值是否等于0,如果不等于0,则退出主线程。

    public class volatileVisibility {
        public static void main(String[] args) {
            // 资源类
            ShareData shareData = new ShareData();
    
            // 子线程 实现了Runnable接口的,lambda表达式
            new Thread(() -> {
    
                System.out.println(Thread.currentThread().getName() + "	 come in");
    
                // 线程睡眠3秒,假设在进行运算
                try {
                    TimeUnit.SECONDS.sleep(3);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                // 修改number的值
                myData.setNumberTo100();
    
                // 输出修改后的值
                System.out.println(Thread.currentThread().getName() + "	 update number value:" + myData.number);
    
            }, "子线程").start();
    
            while(myData.number == 0) {
                // main线程就一直在这里等待循环,直到number的值不等于零
            }
    
            // 按道理这个值是不可能打印出来的,因为主线程运行的时候,number的值为0,所以一直在循环
            // 如果能输出这句话,说明子线程在睡眠3秒后,更新的number的值,重新写入到主内存,并被main线程感知到了
            System.out.println(Thread.currentThread().getName() + "	 主线程感知到了 number 不等于 0");
    
            /**
             * 最后输出结果:
             * 子线程     come in
             * 子线程     update number value:100
             * 最后线程没有停止,并行没有输出"主线程知道了 number 不等于0"这句话,说明没有用volatile修饰的变量,变量的更新是不可见的
             */
        }
    }
    

    没有使用volatile

    (3)我们用volatile修饰变量number

    class ShareData {
        //volatile 修饰的关键字,是为了增加多个线程之间的可见性,只要有一个线程修改了内存中的值,其它线程也能马上感知
        volatile int number = 0;
    
        public void setNumberTo100() {
            this.number = 100;
        }
    }
    

    输出结果:

    子线程	 come in
    子线程	 update number value:100
    main	 主线程知道了 number 不等于 0
    
    Process finished with exit code 0
    

    mark

    小结:说明用volatile修饰的变量,当某线程更新变量后,其他线程也能感知到。

    五、那为什么其他线程能感知到变量更新?

    mark

    其实这里就是用到了“窥探(snooping)”协议。在说“窥探(snooping)”协议之前,首先谈谈缓存一致性的问题。

    5.1 缓存一致性

    当多个CPU持有的缓存都来自同一个主内存的拷贝,当有其他CPU偷偷改了这个主内存数据后,其他CPU并不知道,那拷贝的内存将会和主内存不一致,这就是缓存不一致。那我们如何来保证缓存一致呢?这里就需要操作系统来共同制定一个同步规则来保证,而这个规则就有MESI协议。

    如下图所示,CPU2 偷偷将num修改为2,内存中num也被修改为2,但是CPU1和CPU3并不知道num值变了。

    原理图4-缓存一致性1

    5.2 MESI

    当CPU写数据时,如果发现操作的变量是共享变量,即在其它CPU中也存在该变量的副本,系统会发出信号通知其它CPU将该内存变量的缓存行设置为无效。如下图所示,CPU1和CPU3 中num=1已经失效了。

    原理图5-缓存一致性2

    当其它CPU读取这个变量的时,发现自己缓存该变量的缓存行是无效的,那么它就会从内存中重新读取。

    如下图所示,CPU1和CPU3发现缓存的num值失效了,就重新从内存读取,num值更新为2。

    原理图6-缓存一致性3

    5.3 总线嗅探

    那其他CPU是怎么知道要将缓存更新为失效的呢?这里是用到了总线嗅探技术。

    每个CPU不断嗅探总线上传播的数据来检查自己缓存值是否过期了,如果处理器发现自己的缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置为无效状态,当处理器对这个数据进行修改操作的时候,会重新从内存中把数据读取到处理器缓存中。

    原理图7-缓存一致性4

    5.4 总线风暴

    总线嗅探技术有哪些缺点?

    由于MESI缓存一致性协议,需要不断对主线进行内存嗅探,大量的交互会导致总线带宽达到峰值。因此不要滥用volatile,可以用锁来替代,看场景啦~

    六、能演示下volatile为什么不保证原子性吗?

    原子性:一个操作或一系列操作是不可分割的,要么同时成功,要么同时失败。

    这个定义和volatile啥关系呀,完全不能理解呀?Show me the code!

    考虑一下这种场景:

    当20个线程同时给number自增1,执行1000次以后,number的值为多少呢?

    在单线程的场景,答案是20000,如果是多线程的场景下呢?答案是可能是20000,但很多情况下都是小于20000。

    示例代码:

    package com.jackson0714.passjava.threads;
    
    /**
     演示volatile 不保证原子性
     * @create: 2020-08-13 09:53
     */
    
    public class VolatileAtomicity {
        public static volatile int number = 0;
    
        public static void increase() {
            number++;
        }
    
        public static void main(String[] args) {
    
            for (int i = 0; i < 50; i++) {
                new Thread(() -> {
                    for (int j = 0; j < 1000; j++) {
                        increase();
                    }
                }, String.valueOf(i)).start();
            }
    
            // 当所有累加线程都结束
            while(Thread.activeCount() > 2) {
                Thread.yield();
            }
    
            System.out.println(number);
        }
    }
    

    执行结果:第一次19144,第二次20000,第三次19378。

    volatile第一次执行结果

    volatile第二次执行结果

    volatile第三次执行结果

    我们来分析一下increase()方法,通过反编译工具javap得到如下汇编代码:

      public static void increase();
        Code:
           0: getstatic     #2                  // Field number:I
           3: iconst_1
           4: iadd
           5: putstatic     #2                  // Field number:I
           8: return
    

    number++其实执行了3条指令

    getstatic:拿number的原始值
    iadd:进行加1操作
    putfield:把加1后的值写回

    执行了getstatic指令number的值取到操作栈顶时,volatile关键字保证了number的值在此时是正确的,但是在执行iconst_1、iadd这些指令的时候,其他线程可能已经把number的值改变了,而操作栈顶的值就变成了过期的数据,所以putstatic指令执行后就可能把较小的number值同步回主内存之中。

    总结如下:

    在执行number++这行代码时,即使使用volatile修饰number变量,在执行期间,还是有可能被其他线程修改,没有保证原子性。

    七、怎么保证输出结果是20000呢?

    7.1 synchronized同步代码块

    我们可以通过使用synchronized同步代码块来保证原子性。从而使结果等于20000

    public synchronized static void increase() {
       number++;
    }
    

    synchronized同步代码块执行结果

    但是使用synchronized太重了,会造成阻塞,只有一个线程能进入到这个方法。我们可以使用Java并发包(JUC)中的AtomicInterger工具包。

    7.2 AtomicInterger原子性操作

    我们来看看AtomicInterger原子自增的方法getAndIncrement()

    AtomicInterger

    public static AtomicInteger atomicInteger = new AtomicInteger();
    
    public static void main(String[] args) {
    
        for (int i = 0; i < 20; i++) {
            new Thread(() -> {
                for (int j = 0; j < 1000; j++) {
                    atomicInteger.getAndIncrement();
                }
            }, String.valueOf(i)).start();
        }
    
        // 当所有累加线程都结束
        while(Thread.activeCount() > 2) {
            Thread.yield();
        }
    
        System.out.println(atomicInteger);
    }
    

    多次运行的结果都是20000。

    getAndIncrement的执行结果

    八、禁止指令重排又是啥?

    说到指令重排就得知道为什么要重排,有哪几种重排。

    如下图所示,指令执行顺序是按照1>2>3>4的顺序,经过重排后,执行顺序更新为指令3->4->2->1。

    原理图8-指令重排

    会不会感觉到重排把指令顺序都打乱了,这样好吗?

    可以回想下小学时候的数学题:2+3-5=?,如果把运算顺序改为3-5+2=?,结果也是一样的。所以指令重排是要保证单线程下程序结果不变的情况下做重排。

    8.1 为什么要重排

    计算机在执行程序时,为了提高性能,编译器和处理器常常会对指令做重排序。

    8.2 有哪几种重排

    • 1.编译器优化重排:编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。

    • 2.指令级的并行重排:现代处理器采用了指令级并行技术来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。

    • 3.内存系统的重排:由于处理器使用缓存和读/写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。

    原理图9-三种重排

    注意:

    • 单线程环境里面确保最终执行结果和代码顺序的结果一致

    • 处理器在进行重排序时,必须要考虑指令之间的数据依赖性

    • 多线程环境中线程交替执行,由于编译器优化重排的存在,两个线程中使用的变量能否保证一致性是无法确定的,结果无法预测。

    8.3 举个例子来说说多线程中的指令重排?

    设想一下这种场景:定义了变量num=0和变量flag=false,线程1调用初始化函数init()执行后,线程调用add()方法,当另外线程判断flag=true后,执行num+100操作,那么我们预期的结果是num会等于101,但因为有指令重排的可能,num=1和flag=true执行顺序可能会颠倒,以至于num可能等于100

    public class VolatileResort {
        static int num = 0;
        static boolean flag = false;
        public static void init() {
            num= 1;
            flag = true;
        }
        public static void add() {
            if (flag) {
                num = num + 5;
                System.out.println("num:" + num);
            }
        }
        public static void main(String[] args) {
            init();
            new Thread(() -> {
                add();
            },"子线程").start();
        }
    }
    
    

    先看线程1中指令重排:

    num= 1;flag = true; 的执行顺序变为 flag=true;num = 1;,如下图所示的时序图

    原理图10-线程1指令重排

    如果线程2 num=num+5 在线程1设置num=1之前执行,那么线程2的num变量值为5。如下图所示的时序图。

    原理图11-线程2在num=1之前执行

    8.4 volatile怎么实现禁止指令重排?

    我们使用volatile定义flag变量:

    static volatile boolean flag = false;
    

    如何实现禁止指令重排:

    原理:在volatile生成的指令序列前后插入内存屏障(Memory Barries)来禁止处理器重排序。

    有如下四种内存屏障:

    四种内存屏障

    volatile写的场景如何插入内存屏障:

    • 在每个volatile写操作的前面插入一个StoreStore屏障(写-写 屏障)。

    • 在每个volatile写操作的后面插入一个StoreLoad屏障(写-读 屏障)。

    原理图12-volatile写的场景如何插入内存屏障

    StoreStore屏障可以保证在volatile写(flag赋值操作flag=true)之前,其前面的所有普通写(num的赋值操作num=1) 操作已经对任意处理器可见了,保障所有普通写在volatile写之前刷新到主内存。

    volatile读场景如何插入内存屏障:

    • 在每个volatile读操作的后面插入一个LoadLoad屏障(读-读 屏障)。

    • 在每个volatile读操作的后面插入一个LoadStore屏障(读-写 屏障)。

    原理图13-volatile读场景如何插入内存屏障

    LoadStore屏障可以保证其后面的所有普通写(num的赋值操作num=num+5) 操作必须在volatile读(if(flag))之后执行。

    十、volatile常见应用

    这里举一个应用,双重检测锁定的单例模式

    package com.jackson0714.passjava.threads;
    /**
     演示volatile 单例模式应用(双边检测)
     * @author: 悟空聊架构
     * @create: 2020-08-17
     */
    
    class VolatileSingleton {
        private static VolatileSingleton instance = null;
        private VolatileSingleton() {
            System.out.println(Thread.currentThread().getName() + "	 我是构造方法SingletonDemo");
        }
        public static VolatileSingleton getInstance() {
            // 第一重检测
            if(instance == null) {
                // 锁定代码块
                synchronized (VolatileSingleton.class) {
                    // 第二重检测
                    if(instance == null) {
                        // 实例化对象
                        instance = new VolatileSingleton();
                    }
                }
            }
            return instance;
        }
    }
    

    代码看起来没有问题,但是 instance = new VolatileSingleton();其实可以看作三条伪代码:

    memory = allocate(); // 1、分配对象内存空间
    instance(memory); // 2、初始化对象
    instance = memory; // 3、设置instance指向刚刚分配的内存地址,此时instance != null
    

    步骤2 和 步骤3之间不存在 数据依赖关系,而且无论重排前 还是重排后,程序的执行结果在单线程中并没有改变,因此这种重排优化是允许的。

    memory = allocate(); // 1、分配对象内存空间
    instance = memory; // 3、设置instance指向刚刚分配的内存地址,此时instance != null,但是对象还没有初始化完成
    instance(memory); // 2、初始化对象
    

    如果另外一个线程执行:if(instance == null) 时,则返回刚刚分配的内存地址,但是对象还没有初始化完成,拿到的instance是个假的。如下图所示:

    原理图14-双重检锁存在的并发问题

    解决方案:定义instance为volatile变量

    private static volatile VolatileSingleton instance = null;
    

    十一、volatile都不保证原子性,为啥我们还要用它?

    奇怪的是,volatile都不保证原子性,为啥我们还要用它?

    volatile是轻量级的同步机制,对性能的影响比synchronized小。

    典型的用法:检查某个状态标记以判断是否退出循环。

    比如线程试图通过类似于数绵羊的传统方法进入休眠状态,为了使这个示例能正确执行,asleep必须为volatile变量。否则,当asleep被另一个线程修改时,执行判断的线程却发现不了。

    那为什么我们不直接用synchorized,lock锁?它们既可以保证可见性,又可以保证原子性为何不用呢?

    因为synchorized和lock是排他锁(悲观锁),如果有多个线程需要访问这个变量,将会发生竞争,只有一个线程可以访问这个变量,其他线程被阻塞了,会影响程序的性能。

    注意:当且仅当满足以下所有条件时,才应该用volatile变量

    • 对变量的写入操作不依赖变量的当前值,或者你能确保只有单个线程更新变量的值。
    • 该变量不会与其他的状态一起纳入不变性条件中。
    • 在访问变量时不需要加锁。

    十二、volatile和synchronzied的区别

    • volatile只能修饰实例变量和类变量,synchronized可以修饰方法和代码块。
    • volatile不保证原子性,而synchronized保证原子性
    • volatile 不会造成阻塞,而synchronized可能会造成阻塞
    • volatile 轻量级锁,synchronized重量级锁
    • volatile 和synchronized都保证了可见性和有序性

    十三、小结

    • volatile 保证了可见性:当一个线程修改了共享变量的值时,其他线程能够立即得知这个修改。
    • volatile 保证了单线程下指令不重排:通过插入内存屏障保证指令执行顺序。
    • volatitle不保证原子性,如a++这种自增操作是有并发风险的,比如扣减库存、发放优惠券的场景。
    • volatile 类型的64位的long型和double型变量,对该变量的读/写具有原子性。
    • volatile 可以用在双重检锁的单例模式种,比synchronized性能更好。
    • volatile 可以用在检查某个状态标记以判断是否退出循环。

    期待后篇么?CAS走起!

    我是悟空,越挫越勇的悟空,奥利给!

    悟空

    参考资料:

    《深入理解Java虚拟机》

    《Java并发编程的艺术》

    《Java并发编程实战》

  • 相关阅读:
    BigDecimal
    android sdk manager 无法更新,解决连不上dl.google.com的问题
    程序卡在 while(SPI_I2S_GetFlagStatus(W5500_SPI, SPI_I2S_FLAG_TXE) == RESET) 处
    获取本设备IP地址
    Xamarin Android 监听音量键(下)
    xamarin Android 监听音量键(上)
    最大子序列和
    2.找出单独出现的数字
    编程题常见输入格式处理方法
    二进制比较:破解 LuaJIT 加密脚本的一种新思路。直接修改,无需反编译
  • 原文地址:https://www.cnblogs.com/jackson0714/p/java_volatile.html
Copyright © 2020-2023  润新知