Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 4395 | Accepted: 1748 |
Description
For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.
Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.
To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.
Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.
Input
* Line 1: Four space-separated integers: N, T, S, and E
* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i
Output
* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.
Sample Input
2 6 6 4 11 4 6 4 4 8 8 4 9 6 6 8 2 6 9 3 8 9
Sample Output
10
Source
本题的大意就是问从S 到 T 经过边得个数恰为k的最短路是多少。
参考国家队集训论文 08年的 矩阵乘法在信息学中的应用
01邻接矩阵A的K次方C=A^K,C[i][j]表示i点到j点正好经过K条边的路径数
对应于这道题,对邻接图进行K次floyd之后,C[i][j]就是点i到j正好经过K条边的最短路
但是K次floyd难免复杂度太高了。 所以可以使用快速幂的方法,二分的往上求解
题意:
求从一个点s 到 一点 e 经过 n 条边的最短路经是多少(可以有重边):
看到很难多解题报告说的是n 个点 ,其实,n 条边 应该是 n - 1 个点
题解:
当 c[i][j] > a[i][k] + a[k][j] 则更新
但是这个题的 n (边数太大)我们要用到 倍增法,其实即使 二分思想 例如 经过 5 条边 把 (4 个点) == 两个 2 条边的 松驰一次 ;
#include<iostream> #include<cstdio> #include<cstring> #include<map> using namespace std; int N,T,S,E,num; map<int,int> mp; struct Matrix{ int ma[210][210]; void clear(){ memset(ma,0x3f,sizeof(ma)); //初始化一定要大,否则WA } }; Matrix Floyd(Matrix a,Matrix b){ Matrix dis; dis.clear(); int i,j,k; for(k=1;k<=num;k++) //一次floyd 是找到一个中间点 for(i=1;i<=num;i++) for(j=1;j<=num;j++) if(dis.ma[i][j]>a.ma[i][k]+b.ma[k][j]) dis.ma[i][j]=a.ma[i][k]+b.ma[k][j]; return dis; } Matrix Solve(Matrix a,int k){ Matrix ans=a; while(k){ if(k&1){ ans=Floyd(ans,a); } a=Floyd(a,a); k>>=1; } return ans; } int main(){ //freopen("input.txt","r",stdin); Matrix a; while(~scanf("%d%d%d%d",&N,&T,&S,&E)){ num=0; mp.clear(); a.clear(); int u,v,w; while(T--){ scanf("%d%d%d",&w,&u,&v); if(mp[u]==0) mp[u]=++num; if(mp[v]==0) mp[v]=++num; if(a.ma[mp[u]][mp[v]]>w) a.ma[mp[u]][mp[v]]=a.ma[mp[v]][mp[u]]=w; } a=Solve(a,N-1); // N 条边 ,经过 N-1 个点 printf("%d\n",a.ma[mp[S]][mp[E]]); } return 0; }