• LeetCode 999. 车的可用捕获量


    我的LeetCode:https://leetcode-cn.com/u/ituring/

    我的LeetCode刷题源码[GitHub]:https://github.com/izhoujie/Algorithmcii

    LeetCode 999. 车的可用捕获量

    题目

    在一个 8 x 8 的棋盘上,有一个白色车(rook)。也可能有空方块,白色的象(bishop)和黑色的卒(pawn)。它们分别以字符 “R”,“.”,“B” 和 “p” 给出。大写字符表示白棋,小写字符表示黑棋。

    车按国际象棋中的规则移动:它选择四个基本方向中的一个(北,东,西和南),然后朝那个方向移动,直到它选择停止、到达棋盘的边缘或移动到同一方格来捕获该方格上颜色相反的卒。另外,车不能与其他友方(白色)象进入同一个方格。

    返回车能够在一次移动中捕获到的卒的数量。
     
    示例 1:

    输入:[[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".","R",".",".",".","p"],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."]]
    输出:3
    解释:
    在本例中,车能够捕获所有的卒。
    

    示例 2:

    输入:[[".",".",".",".",".",".",".","."],[".","p","p","p","p","p",".","."],[".","p","p","B","p","p",".","."],[".","p","B","R","B","p",".","."],[".","p","p","B","p","p",".","."],[".","p","p","p","p","p",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."]]
    输出:0
    解释:
    象阻止了车捕获任何卒。
    

    示例 3:

    输入:[[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".","p",".",".",".","."],["p","p",".","R",".","p","B","."],[".",".",".",".",".",".",".","."],[".",".",".","B",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".",".",".",".",".","."]]
    输出:3
    解释: 
    车可以捕获位置 b5,d6 和 f5 的卒。
    

    提示:

    • board.length == board[i].length == 8
    • board[i][j] 可以是 'R','.','B' 或 'p'
    • 只有一个格子上存在 board[i][j] == 'R'

    来源:力扣(LeetCode)
    链接:https://leetcode-cn.com/problems/available-captures-for-rook
    著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

    解题思路

    思路1-题目较长,读懂后就简单了;

    1. 遍历找到R的位置;
    2. 从R的位置向四个方向上搜寻p,且p必须是首个遇到的字符,不能是B;

    总结:本题的唯一难点就是题目又臭又长,读懂题比写代码要略难一点-。-

    算法源码示例

    package leetcode;
    
    /**
     * @author ZhouJie
     * @date 2020年3月26日 下午1:21:57 
     * @Description: 999. 车的可用捕获量
     *
     */
    public class LeetCode_0999 {
    
    }
    
    class Solution_0999 {
    	/**
    	 * @author: ZhouJie
    	 * @date: 2020年3月26日 下午1:38:42 
    	 * @param: @param board
    	 * @param: @return
    	 * @return: int
    	 * @Description: 1-
    	 *
    	 */
    	public int numRookCaptures(char[][] board) {
    		// 四个方向的增量
    		int[] x = new int[] { 1, -1, 0, 0 };
    		int[] y = new int[] { 0, 0, -1, 1 };
    		// 可捕获的目标数;
    		int count = 0;
    		for (int i = 0; i < 8; i++) {
    			for (int j = 0; j < 8; j++) {
    				// 找到R的位置
    				if (board[i][j] == 'R') {
    					// 在四个方向上探寻p
    					for (int k = 0; k < 4; k++) {
    						int x1 = i + x[k];
    						int y1 = j + y[k];
    						while (x1 > -1 && x1 < 8 && y1 > -1 && y1 < 8) {
    							if (board[x1][y1] == 'B') {
    								break;
    							} else if (board[x1][y1] == 'p') {
    								count++;
    								break;
    							} else {
    								x1 += x[k];
    								y1 += y[k];
    							}
    						}
    					}
    					return count;
    				}
    			}
    		}
    		return count;
    	}
    }
    
    
  • 相关阅读:
    转帖:linux 下注册apache开机自启动
    apache 编译 rewrite 模块
    Skyline开发入门(C#)
    matlab的m文件怎么集成到vs里?
    C#打包安装与卸载
    OnClick与OnClientClick的时序和条件
    javascript弹出窗口代码大全
    .NET开发人员必知的八个网站
    [转] GIS算法源码集合
    最短路径算法——Dijkstra and Floyd算法
  • 原文地址:https://www.cnblogs.com/izhoujie/p/12573984.html
Copyright © 2020-2023  润新知