• 【BZOJ】4056: [Ctsc2015]shallot


    题意

    在线、可持久化地维护一条二维平面上的折线,支持查询与任意一条直线的交点个数。
    点的个数和操作个数小于(10^5)

    分析

    一条折线可以用一个序列表示,可持久化序列考虑用可持久化treap。
    如何判断交点?如果有交点,那么一定与包含这个折线的矩阵有交点。

    题解

    所以我们可持久化treap一下即可,虽然这个复杂度很不靠谱,纯rp算法。

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int Lim=20000000, M=1e5+10, oo=~0u>>1;
    struct node *null;
    struct node {
    	int x, y, s, mx[2], mn[2];
    	node *c[2], *ch[2];
    	void up() {
    		s=c[0]->s+c[1]->s+1;
    		mx[0]=max(x, max(c[0]->mx[0], c[1]->mx[0]));
    		mn[0]=min(x, min(c[0]->mn[0], c[1]->mn[0]));
    		mx[1]=max(y, max(c[0]->mx[1], c[1]->mx[1]));
    		mn[1]=min(y, min(c[0]->mn[1], c[1]->mn[1]));
    		if(c[0]!=null) ch[0]=c[0]->ch[0]; else ch[0]=this;
    		if(c[1]!=null) ch[1]=c[1]->ch[1]; else ch[1]=this;
    	}
    	void init(int _x, int _y) {
    		x=mx[0]=mn[0]=_x;
    		y=mx[1]=mn[1]=_y;
    		c[0]=c[1]=null;
    		ch[0]=ch[1]=this;
    		s=1;
    	}
    }Po[Lim], *iT=Po, *t[M];
    node *newnode(int x, int y) {
    	iT->init(x, y);
    	return iT++;
    }
    void init() {
    	null=iT++;
    	null->init(0, 0);
    	null->mx[0]=null->mx[1]=-oo;
    	null->mn[0]=null->mn[1]=oo;
    	null->s=0;
    }
    node *build(int l, int r) {
    	if(l>r) {
    		return null;
    	}
    	node *ret;
    	int x, y, mid=(l+r)>>1;
    	node *le=build(l, mid-1);
    	scanf("%d%d", &x, &y);
    	node *ri=build(mid+1, r);
    	ret=newnode(x, y);
    	ret->c[0]=le;
    	ret->c[1]=ri;
    	ret->up();
    	return ret;
    }
    node *update(int p, int X, int Y, node *x) {
    	node *y;
    	if(x->s==p) {
    		y=newnode(X, Y);
    		y->c[0]=x;
    		y->up();
    		return y;
    	}
    	y=iT++;
    	*y=*x;
    	if(y->c[0]->s>=p) {
    		y->c[0]=update(p, X, Y, y->c[0]);
    	}
    	else {
    		y->c[1]=update(p-y->c[0]->s-1, X, Y, y->c[1]);
    	}
    	y->up();
    	return y;
    }
    ll cross(int x0, int y0, int x, int y) {
    	return (ll)x0*y-(ll)x*y0;
    }
    bool jiao(int x, int y, int xx, int yy, int x0, int y0, int X, int Y) {
    	ll a=cross(x-x0, y-y0, X, Y),
    	   b=cross(xx-x0, yy-y0, X, Y);
    	a=a>=0?a>0:-1;
    	b=b>=0?b>0:-1;
    	return a*b<=0;
    }
    bool jiao(node *x, int x0, int y0, int X, int Y) {
    	return jiao(x->mn[0], x->mx[1], x->mn[0], x->mn[1], x0, y0, X, Y) ||
    		   jiao(x->mn[0], x->mn[1], x->mx[0], x->mn[1], x0, y0, X, Y) ||
    		   jiao(x->mx[0], x->mn[1], x->mx[0], x->mx[1], x0, y0, X, Y) ||
    		   jiao(x->mx[0], x->mx[1], x->mn[0], x->mx[1], x0, y0, X, Y);
    }
    int query(int x0, int y0, int X, int Y, node *x) {
    	if(x->s<=1 || !jiao(x, x0, y0, X, Y)) {
    		return 0;
    	}
    	int ret=0;
    	if(x->c[0]!=null && jiao(x->x, x->y, x->c[0]->ch[1]->x, x->c[0]->ch[1]->y, x0, y0, X, Y)) {
    		++ret;
    	}
    	if(x->c[1]!=null && jiao(x->x, x->y, x->c[1]->ch[0]->x, x->c[1]->ch[0]->y, x0, y0, X, Y)) {
    		++ret;
    	}
    	return query(x0, y0, X, Y, x->c[0])+query(x0, y0, X, Y, x->c[1])+ret;
    }
    int main() {
    	init();
    	int n, m, cn, last=0;
    	scanf("%d%d%d", &n, &m, &cn);
    	t[0]=build(1, n);
    	for(int kk=1; kk<=m; ++kk) {
    		static char s[5];
    		int T, x0, y0, x, y;
    		scanf("%s", s);
    		if(s[0]=='H') {
    			scanf("%d%d%d%d%d", &T, &x0, &y0, &x, &y);
    			if(cn) {
    				x0^=last;
    				y0^=last;
    				x^=last;
    				y^=last;
    			}
    			t[kk]=t[T];
    			printf("%d
    ", last=query(x0, y0, x, y, t[kk]));
    		}
    		else {
    			scanf("%d%d%d%d", &T, &x0, &x, &y);
    			if(cn) {
    				x^=last;
    				y^=last;
    			}
    			t[kk]=update(x0, x, y, t[T]);
    		}
    	}
    	return 0;
    }
  • 相关阅读:
    Django系列6:Model简介,ORM,字段类型,约束
    Django系列4:数据常规操作级联数据
    Django系列5:脑图总结
    Sorted Adjacent Differences
    C
    E. Sleeping Schedule
    D. Ehab the Xorcist
    C. Game with Chips
    D. Walk on Matrixv
    Circle of Monsters
  • 原文地址:https://www.cnblogs.com/iwtwiioi/p/4986380.html
Copyright © 2020-2023  润新知