http://poj.org/problem?id=2299
在两个元素相同的数列里,其中一个数列要移动到另一个数列相同元素相同的位置,那么要移动的次数就是这个数列关于另一个数列的逆序对数(hash后)
逆序对的求法我原来的博文有 http://www.cnblogs.com/iwtwiioi/p/3523120.html
用归并排序求逆序对,大的在前
左闭右开
#include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> using namespace std; #define rep(i, n) for(int i=0; i<(n); ++i) #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) for(int i=(a);i>=(n);--i) #define for4(i,a,n) for(int i=(a);i>(n);--i) #define CC(i,a) memset(i,a,sizeof(i)) #define read(a) a=getint() #define print(a) printf("%d", a) #define dbg(x) cout << #x << " = " << x << endl #define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; } inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } inline const int max(const int &a, const int &b) { return a>b?a:b; } inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=500005, oo=~0u>>1; int a[N], L[N], R[N]; long long cnt; void gb(int l, int r) { if(l<r-1) { int m=(l+r)>>1, i, j; gb(l, m); gb(m, r); for(i=0; i<m-l; ++i) L[i]=a[l+i]; for(j=0; j<r-m; ++j) R[j]=a[m+j]; L[i]=R[j]=-oo; i=j=0; while(l<r) { if(L[i]>R[j]) { a[l++]=L[i++]; cnt+=r-m-j; } else a[l++]=R[j++]; } } } int main() { int n; while(scanf("%d", &n) && n) { cnt=0; rep(i, n) read(a[i]); gb(0, n); printf("%lld ", cnt); } return 0; }
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The
input contains several test cases. Every test case begins with a line
that contains a single integer n < 500,000 -- the length of the input
sequence. Each of the the following n lines contains a single integer 0
≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is
terminated by a sequence of length n = 0. This sequence must not be
processed.
Output
For
every input sequence, your program prints a single line containing an
integer number op, the minimum number of swap operations necessary to
sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
Source