• 【POJ】3070 Fibonacci(矩阵乘法)


    http://poj.org/problem?id=3070

    根据本题算矩阵,用快速幂即可。

    裸题

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    #define rep(i, n) for(int i=0; i<(n); ++i)
    #define for1(i,a,n) for(int i=(a);i<=(n);++i)
    #define for2(i,a,n) for(int i=(a);i<(n);++i)
    #define for3(i,a,n) for(int i=(a);i>=(n);--i)
    #define for4(i,a,n) for(int i=(a);i>(n);--i)
    #define CC(i,a) memset(i,a,sizeof(i))
    #define read(a) a=getint()
    #define print(a) printf("%d", a)
    #define dbg(x) cout << #x << " = " << x << endl
    #define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
    inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
    inline const int max(const int &a, const int &b) { return a>b?a:b; }
    inline const int min(const int &a, const int &b) { return a<b?a:b; }
    typedef int matrix[2][2];
    matrix a, b;
    const int M=10000;
    int n;
    inline void mul(matrix a, matrix b, matrix c, const int &la, const int &lb, const int &lc, const int &MOD) {
    	matrix t;
    	rep(i, la) rep(j, lc) {
    		t[i][j]=0;
    		rep(k, lb) t[i][j]=(t[i][j]+(a[i][k]*b[k][j])%MOD)%MOD;
    	}
    	rep(i, la) rep(j, lc) c[i][j]=t[i][j];
    }
    int main() {
    	while(~scanf("%d", &n) && n!=-1) {
    		b[0][0]=b[1][1]=1;
    		a[0][0]=a[0][1]=a[1][0]=1;
    		b[0][1]=b[1][0]=a[1][1]=0;
    		while(n) {
    			if(n&1) mul(a, b, b, 2, 2, 2, M);
    			mul(a, a, a, 2, 2, 2, M);
    			n>>=1;
    		}
    		printf("%d
    ", b[1][0]);
    	}
    	return 0;
    }
    

    Description

    In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

    An alternative formula for the Fibonacci sequence is

    .

    Given an integer n, your goal is to compute the last 4 digits of Fn.

    Input

    The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

    Output

    For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

    Sample Input

    0
    9
    999999999
    1000000000
    -1

    Sample Output

    0
    34
    626
    6875

    Hint

    As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

    .

    Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

    .

    Source

  • 相关阅读:
    Java基础之在窗口中绘图——移动曲线的控制点(CurveApplet 3 moving the control points)
    【javascript】BOM介绍
    【javascript】Web Storage机制
    【javascript】50. Pow(x, n)
    【java】6. ZigZag Conversion
    【java】最长回文字符串(源码)
    【javascript】js实现单例模式
    【js注入】js注入
    【bootstrap】bootstrap可关闭警告框
    【h5】h5数据跨域交换postMessage用法
  • 原文地址:https://www.cnblogs.com/iwtwiioi/p/3946064.html
Copyright © 2020-2023  润新知