Description
You are given a permutation of the numbers 1, 2, ..., n and m pairs of positions (aj, bj).
At each step you can choose a pair from the given positions and swap the numbers in that positions. What is the lexicographically maximal permutation one can get?
Let p and q be two permutations of the numbers 1, 2, ..., n. p is lexicographically smaller than the q if a number 1 ≤ i ≤ n exists, sopk = qk for 1 ≤ k < i and pi < qi.
Input
The first line contains two integers n and m (1 ≤ n, m ≤ 106) — the length of the permutation p and the number of pairs of positions.
The second line contains n distinct integers pi (1 ≤ pi ≤ n) — the elements of the permutation p.
Each of the last m lines contains two integers (aj, bj) (1 ≤ aj, bj ≤ n) — the pairs of positions to swap. Note that you are given apositions, not the values to swap.
Output
Print the only line with n distinct integers p'i (1 ≤ p'i ≤ n) — the lexicographically maximal permutation one can get.
Sample Input
9 6
1 2 3 4 5 6 7 8 9
1 4
4 7
2 5
5 8
3 6
6 9
7 8 9 4 5 6 1 2 3
#include<iostream> #include<string.h> #include<stdio.h> #include<stdlib.h> #include<algorithm> #include<queue> #include<vector> using namespace std; const int N=1000005; int n,m; vector<int>num[N]; vector<int>pos[N]; int r[N],a[N],ans[N]; priority_queue<int>qu[N]; int findx(int x) { return r[x] == x ? x : r[x] = findx(r[x]); } void merge(int x,int y) { int fa=findx(x); int fb=findx(y); if(fa!=fb) { r[fa]=fb; } } int main() { scanf("%d%d",&n,&m); for(int i=1; i<=n; i++) { r[i]=i; scanf("%d",&a[i]); } for(int i=1; i<=m; i++) { int a,b; scanf("%d%d",&a,&b); merge(a,b);//下标a,b的数可互换,合并; } for(int i=1; i<=n; i++) { findx(i); qu[r[i]].push(a[i]);//下标为i时,所有可能在那个位置的数,入队,优先队列默认int型数大先出队 } for(int j=1; j<=n; j++) { printf("%d ",qu[r[j]].top());//取各个位置队顶输出 qu[r[j]].pop(); } return 0; }