odeforces 1051 D. Bicolorings (DP)
You are given a grid, consisting of 22 rows and nn columns. Each cell of this grid should be colored either black or white.
Two cells are considered neighbours if they have a common border and share the same color. Two cells AA and BB belong to the same component if they are neighbours, or if there is a neighbour of AA that belongs to the same component with BB.
Let's call some bicoloring beautiful if it has exactly kk components.
Count the number of beautiful bicolorings. The number can be big enough, so print the answer modulo 998244353998244353.
The only line contains two integers nn and kk (1≤n≤10001≤n≤1000, 1≤k≤2n1≤k≤2n) — the number of columns in a grid and the number of components required.
Print a single integer — the number of beautiful bicolorings modulo 998244353998244353.
3 4
12
4 1
2
1 2
2
One of possible bicolorings in sample 11:
1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 int n,k; 5 6 const int mod = 998244353; 7 ll dp[1005][2005][4]; 8 int main() 9 { 10 scanf("%d%d",&n,&k); 11 dp[1][1][0] = 1; 12 dp[1][2][1] = 1; 13 dp[1][2][2] = 1; 14 dp[1][1][3] = 1; 15 for(int i=2;i<=n;i++) 16 { 17 for(int j=1;j<=(i<<1);j++) 18 { 19 dp[i][j][0] = (dp[i][j][0] + dp[i-1][j][0] + dp[i-1][j][1] + dp[i-1][j][2] + dp[i-1][j-1][3])%mod; 20 dp[i][j][1] = (dp[i][j][1] + dp[i-1][j-1][0] + dp[i-1][j][1] + dp[i-1][j-2][2]+dp[i-1][j-1][3])%mod; 21 dp[i][j][2] = (dp[i][j][2] + dp[i-1][j-1][0] + dp[i-1][j-2][1] + dp[i-1][j][2]+dp[i-1][j-1][3])%mod; 22 dp[i][j][3] = (dp[i][j][3] + dp[i-1][j-1][0] + dp[i-1][j][1] + dp[i-1][j][2]+dp[i-1][j][3])%mod; 23 } 24 } 25 printf("%lld ",(dp[n][k][0]+dp[n][k][1]+dp[n][k][2]+dp[n][k][3])%mod); 26 }