Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.OutputThe only line of the output will contain S modulo 9901.
Sample Input
2 3
Sample Output
15
Hint 2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
题意:求AB的所有约数的和 % MOD (9901) 题意中有点问题,我们知道0是没有约数的,我觉得A、B应该都是>0的
思路:我们可以把A分解质因数(p1c1 * p2c2 * .... * pncn)B
约数和:(1 + p1 + p12 + ... + p1B*c1)* (1 + p2 + p22 + ... + p2B*c2)* .... * (1 + pn + pn2 + ... + pnB*cn) ( 排列组合问题)
这样我们可以看出这是多个等比数列乘积,可以用等比数列求和公式 (a1 *(1-qn))/(1-q),我们注意到这里有除法,但是同余模定理是对于加减乘的,那么我们可以利用费马小定理,
求出(1-q)的逆元,然后把除变成乘逆元
坑点:应为 9901 这个质数较小,很容易找到一个数x,(x-1)% MOD == 0 ,就说明这个数是没有逆元的(例217823),那么对于这种情况,我们不能用逆元算,你会发现这种情况下,
pn % MOD == 1 ((p-1)% MOD == 0)),这样(1 + pn + pn2 + ... + pnB*cn) == (1 % MOD + pn %MOD + pn2 %MOD + ... + pnB*cn %MOD) == B*cn+1
1 #include<iostream> 2 #include<cstdio> 3 #include<math.h> 4 using namespace std; 5 6 const int maxn = 1e4; 7 const int mod = 9901; 8 int a,b; 9 int p[maxn]; 10 int c[maxn]; 11 int calc(int x) 12 { 13 int m= 0; 14 int up = sqrt(x); 15 for(int i=2;i<=up;i++) 16 { 17 if(x % i == 0)p[++m] = i,c[m] = 0; 18 while(x % i == 0)x/= i,c[m]++; 19 } 20 if(x > 1)p[++m] = x,c[m] = 1; 21 return m; 22 } 23 24 typedef long long ll; 25 26 ll qpow(ll a,ll b) 27 { 28 ll ans = 1; 29 ll base = a; 30 while(b) 31 { 32 if(b&1)ans = (ans * base)%mod; 33 base = (base * base)%mod; 34 b >>= 1; 35 } 36 return ans; 37 } 38 int main() 39 { 40 scanf("%d%d",&a,&b); 41 int n = calc(a); 42 ll ans = 1; 43 for(int i=1;i<=n;i++) 44 { 45 if((1-p[i])%mod == 0) 46 { 47 ans = (ans * (b * c[i]+ 1))%mod; 48 continue; 49 } 50 ll Ni = qpow(1-p[i],mod-2); 51 ll tmp = 1-qpow(p[i],c[i]*b+1); 52 ans = (ans * (tmp*Ni%mod+mod)%mod)%mod; 53 } 54 printf("%lld ",ans); 55 }
还有一种写法,就是不用公式计算等比数列和,这样就避免了逆元的问题
sum(p,c) = (1 + p + p2 + ... + pk)
(1)c为奇数,sum(p,k)= sum(p,(k-1 )/2)*(1+p(k+1)/2)
sum(p,c) = (1 + p + p2 + ... + p(k-1)/2)+ (p(k+1)/2 + ... + pk) (c为奇数,加上0次幂,变成偶数,刚好可以分成两个等长的数列)
(2)c为偶数,sum(p,k)= sum(p,k/2-1)*(1+pk/2)+ pk
sum(p,c) = (1 + p + p2 + ... + pk/2-1)+ (pk/2 + ... + pk-1)+ pk (c+1是奇数)
1 #include<iostream> 2 #include<cstdio> 3 #include<math.h> 4 using namespace std; 5 6 const int maxn = 1e4; 7 const int mod = 9901; 8 int a,b; 9 int p[maxn]; 10 int c[maxn]; 11 int calc(int x) 12 { 13 int m= 0; 14 for(int i=2;i*i<=x;i++) 15 { 16 if(x % i == 0)p[++m] = i,c[m] = 0; 17 while(x % i == 0)x/= i,c[m]++; 18 } 19 if(x > 1)p[++m] = x,c[m] = 1; 20 return m; 21 } 22 23 typedef long long ll; 24 ll qpow(ll a,ll b) 25 { 26 ll ans = 1; 27 ll base = a; 28 while(b) 29 { 30 if(b&1)ans = (ans * base)%mod; 31 base = (base * base)%mod; 32 b >>= 1; 33 } 34 return ans; 35 } 36 ll sum(ll p,ll c) 37 { 38 if(c == 0)return 1; 39 if(c&1)return ((1+qpow(p,(c+1)/2))%mod*(sum(p,(c-1)/2)%mod))%mod; 40 else return ((1+qpow(p,c/2))%mod*(sum(p,c/2-1))%mod+qpow(p,c))%mod; 41 } 42 43 int main() 44 { 45 scanf("%d%d",&a,&b); 46 int n = calc(a); 47 ll ans = 1; 48 for(int i=1;i<=n;i++) 49 { 50 ans = (ans * sum(p[i],c[i]*b))%mod; 51 } 52 printf("%lld ",ans); 53 }