• Dijkstra算法简单实现(C++)


    图的最短路径问题主要包括三种算法:

    (1)Dijkstra (没有负权边的单源最短路径)

    (2)Floyed (多源最短路径)

    (3)Bellman (含有负权边的单源最短路径)

    本文主要讲使用C++实现简单的Dijkstra算法

    Dijkstra算法简单实现(C++)

      1 #include<iostream>
      2 #include<stack>
      3 using namespace std;
      4 
      5 #define MAXVEX 9
      6 #define INFINITY 65535
      7 
      8 typedef int Patharc[MAXVEX];
      9 typedef int ShortPathTable[MAXVEX];
     10 
     11 typedef struct {
     12     int vex[MAXVEX];
     13     int arc[MAXVEX][MAXVEX];
     14     int numVertexes;
     15 } MGraph;
     16 
     17 // 构建图
     18 void CreateMGraph(MGraph *G){
     19     int i, j, k;
     20     // 初始化图
     21     G->numVertexes = 9;
     22     for(i = 0; i < G->numVertexes; ++i){
     23         G->vex[i] = i;
     24     }
     25     for(i = 0; i < G->numVertexes; ++i){
     26         for(j = 0; j < G->numVertexes; ++j){
     27             if(i == j)
     28                 G->arc[i][j] = 0;
     29             else
     30                 G->arc[i][j] = G->arc[j][i] = INFINITY;
     31         }
     32     }
     33 
     34     G->arc[0][1] = 1;
     35     G->arc[0][2] = 5;
     36 
     37     G->arc[1][2] = 3;
     38     G->arc[1][3] = 7;
     39     G->arc[1][4] = 5;
     40 
     41     G->arc[2][4] = 1;
     42     G->arc[2][5] = 7;
     43 
     44     G->arc[3][4] = 2;
     45     G->arc[3][6] = 3;
     46 
     47     G->arc[4][5] = 3;
     48     G->arc[4][6] = 6;
     49     G->arc[4][7] = 9;
     50 
     51     G->arc[5][7] = 5;
     52 
     53     G->arc[6][7] = 2;
     54     G->arc[6][8] = 7;
     55 
     56     G->arc[7][8] = 4;
     57 
     58     // 设置对称位置元素值
     59     for(i = 0; i < G->numVertexes; ++i){
     60         for(j = i; j < G->numVertexes; ++j){
     61             G->arc[j][i] = G->arc[i][j];
     62         }
     63     }
     64 }
     65 
     66 void ShortPath_Dijkstra(MGraph G, int v0, Patharc P, ShortPathTable D){
     67     int final[MAXVEX];
     68     int i;
     69     for(i = 0; i < G.numVertexes; ++i){
     70         final[i] = 0;
     71         D[i] = G.arc[v0][i];
     72         P[i] = 0;
     73     }
     74     D[v0] = 0;
     75     final[v0] = 1;
     76     for(i = 0; i < G.numVertexes; ++i){
     77         int min = INFINITY;
     78         int j, k, w;
     79 
     80         for(j = 0; j < G.numVertexes; ++j){// 查找距离V0最近的顶点
     81             if(!final[j] && D[j] < min){
     82                 k = j;
     83                 min = D[j];
     84             }
     85         }
     86         final[k] = 1;
     87         for(w = 0; w < G.numVertexes; ++w){// 更新各个顶点的距离
     88             if(!final[w] && (min + G.arc[k][w]) < D[w]){
     89                 D[w] = min + G.arc[k][w];
     90                 P[w] = k;
     91             }
     92         }
     93     }
     94 }
     95 
     96 // 打印最短路径
     97 void PrintShortPath(MGraph G, int v0, Patharc P, ShortPathTable D){
     98     int i, k;
     99     stack<int> path;
    100     cout<<"顶点v"<<v0<<"到其他顶点之间的最短路径如下: "<<endl;
    101     for(i = 0; i < G.numVertexes; ++i){
    102         if(i == v0) continue;
    103         cout<<"v"<<v0<<"--"<<"v"<<i<<" weight: "<<D[i]<<"  Shortest path: ";
    104         path.push(i);
    105         int k = P[i];
    106         while(k != 0){
    107             path.push(k);
    108             k = P[k];
    109         }
    110         path.push(v0);
    111         while(!path.empty()){
    112             if(path.size() != 1)
    113                 cout<<path.top()<<"->";
    114             else
    115                 cout<<path.top()<<endl;
    116             path.pop();
    117         }
    118     }
    119 }
    120 
    121 int main(int argc, char const *argv[]) {
    122     int v0 = 0; // 源点
    123     MGraph G;
    124     Patharc P;
    125     ShortPathTable D;
    126     CreateMGraph(&G);
    127     ShortPath_Dijkstra(G, v0, P, D);
    128     PrintShortPath(G, v0, P, D);
    129     return 0;
    130 }

    运行结果

    顶点v0到其他顶点之间的最短路径如下: 
    v0--v1 weight: 1  Shortest path: 0->1
    v0--v2 weight: 4  Shortest path: 0->1->2
    v0--v3 weight: 7  Shortest path: 0->1->2->4->3
    v0--v4 weight: 5  Shortest path: 0->1->2->4
    v0--v5 weight: 8  Shortest path: 0->1->2->4->5
    v0--v6 weight: 10  Shortest path: 0->1->2->4->3->6
    v0--v7 weight: 12  Shortest path: 0->1->2->4->3->6->7
    v0--v8 weight: 16  Shortest path: 0->1->2->4->3->6->7->8
    [Finished in 1.8s]

    参考资料

    大话数据结构

    Dijkstra's algorithm, Wikipedia

  • 相关阅读:
    Did not find handler method for springMVC资源文件扫描不到---关于spring的那些坑
    mysql中OPTIMIZE TABLE的作用
    Linux环境下apache性能测试工具ab使用详解
    sqlite数据库 adb 从配置到查询表中数据全过程-----献给初学的自己
    c3p0参数解释
    linux下如何启动/停止/重启mysql:
    [MySQL] 变量(参数)的查看和设置
    mysql运行参数详解
    单例模式 理解,简单通透
    this的一些场景
  • 原文地址:https://www.cnblogs.com/iwangzhengchao/p/10269003.html
Copyright © 2020-2023  润新知