• 【LOJ】#2098. 「CQOI2015」多项式


    题解

    令x = x - t代换一下会发现
    (sum_{i = 0}^{n}a_i (x + t)^i = sum_{i = 0}^{n} b_{i} x^{i})
    剩下的就需要写高精度爆算了……

    代码

    #include <bits/stdc++.h>
    #define enter putchar('
    ')
    #define space putchar(' ')
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define eps 1e-8
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
            if(c == '-') f = -1;
            c = getchar();
        }
        while(c >= '0' && c <= '9') {
            res = res * 10 - '0' + c;
            c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) out(x / 10);
        putchar('0' + x % 10);
    }
    int BASE = 100000000;
    int len = 8;
    struct Bignum {
    	vector<int> v;
    	Bignum(int64 x = 0) {
    		*this = x;
    	}
    	Bignum operator = (int64 x) {
    		v.clear();
    		do {
    			v.pb(x % BASE);
    			x /= BASE;
    		}while(x);
    		return *this;
    	}
    	Bignum operator = (string str) {
    		v.clear();int x;
    		for(int i = str.length() ; i > 0 ; i -= len) {
    			int st = max(0,i - len),ed = i;
    			sscanf(str.substr(st,ed - st).c_str(),"%d",&x);
    			v.pb(x);
    		}
    		return *this;
    	}
    	friend Bignum operator + (const Bignum &a,const Bignum &b) {
    		Bignum c;c.v.clear();
    		int x,g = 0,p = 0;
    		while(1) {
    			x = g;
    			if(p < a.v.size()) x += a.v[p];
    			if(p < b.v.size()) x += b.v[p];
    			if(!x && p >= a.v.size() && p >= b.v.size()) break;
    			g = x / BASE;
    			c.v.pb(x % BASE);
    			++p;
    		}
    		return c;
    	}
    	friend Bignum operator - (const Bignum &a,const Bignum &b) {
    		Bignum c;c.v.clear();
    		int x,g = 0,p = 0;
    		while(1) {
    			x = -g;g = 0;
    			if(p < a.v.size()) x += a.v[p];
    			if(p < b.v.size()) x -= b.v[p];
    			if(!x && p >= a.v.size() && p >= b.v.size()) break;
    			if(x < 0) {x += BASE;g = 1;}
    			c.v.pb(x);
    			++p;
    		}
    		return c;
    	}
    	friend Bignum operator * (const Bignum &a,const Bignum &b) {
    		Bignum c;c.v.clear();
    		c.v.resize(a.v.size() + b.v.size());
    		int64 x,g = 0;
    		for(int i = 0 ; i < a.v.size() ; ++i) {
    			g = 0;
    			for(int j = 0 ; j < b.v.size() ; ++j) {
    				x = 1LL * a.v[i] * b.v[j] + g + c.v[i + j];
    				c.v[i + j] = x % BASE;
    				g = x / BASE;
    			}
    			int t = i + b.v.size();
    			while(g) {
    				x = g + c.v[t];
    				c.v[t] = x % BASE;
    				g = x / BASE;
    				++t;
    			}
    		}
    		for(int i = c.v.size() - 1 ; i > 0 ; --i) {
    			if(!c.v[i]) c.v.pop_back();
    			else break;
    		}
    		return c;
    	}
    	friend Bignum operator / (const Bignum &a,const int &d) {
    		Bignum c;
    		c.v.resize(a.v.size());
    		int64 x = 0,t;
    		for(int i = a.v.size() - 1 ; i >= 0 ; --i) {
    			t = 1LL * x * BASE + a.v[i];
    			c.v[i] = t / d;
    			x = t % d;
    		}
    		for(int i = c.v.size() - 1 ; i > 0 ; --i) {
    			if(!c.v[i]) c.v.pop_back();
    			else break;
    		}
    		return c;
    	}
    	void print() {
    		int s = v.size() - 1;
    		printf("%d",v[s]);
    		--s;
    		for(int i = s ; i >= 0 ; --i) {
    			printf("%08d",v[i]);
    		}
    	}
    }N,M,T,C,B,tmp;
    string s[4];
    struct Matrix {
    	int f[2][2];
    	Matrix(){memset(f,0,sizeof(f));}
    	friend Matrix operator * (const Matrix &a,const Matrix &b) {
    		Matrix c;
    		for(int i = 0 ; i <= 1 ; ++i) {
    			for(int j = 0 ; j <= 1 ; ++j) {
    				for(int k = 0 ; k <= 1 ; ++k) {
    					c.f[i][j] = (c.f[i][j] + a.f[i][k] * b.f[k][j]) % 3389;
    				}
    			}
    		}
    		return c;
    	}
    }A[15],ans;
    int64 a[15],num[100005];
    int64 fpow(int64 x,int64 c) {
    	int64 res = 1,t = x;
    	while(c) {
    		if(c & 1) res = 1LL * res * t % 3389;
    		t = 1LL * t * t % 3389;
    		c >>= 1;
    	}
    	return res;
    }
    int main() {
    #ifdef ivorysi
    	freopen("f1.in","r",stdin);
    #endif
    	cin>>s[0]>>s[1]>>s[2];
    	N = s[0];T = s[1],M = s[2];
    	A[0].f[0][0] = A[0].f[1][1] = 1;
    	A[1].f[0][0] = 1234,A[1].f[0][1] = 5678 % 3389,A[1].f[1][1] = 1;
    	ans = A[0];
    	for(int i = 2 ; i <= 10 ; ++i) A[i] = A[i - 1] * A[1];
    	int c = (N - M).v[0];
    	for(int i = 0 ; i < s[0].length() ; ++i) {
    		Matrix t = A[0];
    		for(int j = 1 ; j <= 10 ; ++j) t = t * ans;
    		ans = t * A[s[0][i] - '0'];
    	}
    	a[0] = (ans.f[0][0] + ans.f[0][1]) % 3389;
    	int64 inv = fpow(1234,3389 - 2);
    	for(int i = 1 ; i <= c ; ++i) a[i] = 1LL * (a[i - 1] - 5678 + 3389 * 2) * inv % 3389;
    	tmp = C = 1;
    	for(int i = c; i >= 0 ; --i) {
    		B = B + tmp * C * a[i];
    		tmp = tmp * T;
    		M = M + 1;
    		C = C * M;
    		C = C / (c - i + 1);
    	}
    	B.print();enter;
    }
    
  • 相关阅读:
    private static final long serialVersionUID = 1L;
    HashMap和Hashtable的区别
    MySQL中tinytext、text、mediumtext和longtext详解
    char、varchar、text和nchar、nvarchar、ntext的区别
    java获取文件夹下文件名
    java删除文件
    js判断浏览器
    nodejs调试:node-inspector
    [转]各种开源协议介绍 BSD、Apache Licence、GPL V2 、GPL V3 、LGPL、MIT
    [IBM]掌握Ajax,Ajax中的高级请求和响应
  • 原文地址:https://www.cnblogs.com/ivorysi/p/9572797.html
Copyright © 2020-2023  润新知