• 【AtCoder】AGC016


    A - Shrinking

    用每个字母模拟一下就行

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define eps 1e-10
    #define MAXN 200005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 +c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    char s[105];
    bool vis[30],a[105],b[105];
    int N;
    
    void Solve() {
        scanf("%s",s + 1);
        N = strlen(s + 1);
        for(int i = 1 ; i <= N ; ++i) vis[s[i] - 'a'] = 1;
        int ans = N;
        for(int t = 0 ; t < 26 ; ++t) {
    	if(vis[t]) {
    	    int cnt = 0;
    	    memset(a,0,sizeof(a));
    	    for(int i = 1 ; i <= N ; ++i) a[i] = (s[i] == 'a' + t);
    	    while(1) {
    		bool f = 1;
    		for(int i = 1 ; i <= N - cnt; ++i) {
    		    f = f & a[i];
    		}
    		if(f) break;
    		memset(b,0,sizeof(b));
    		for(int i = 1 ; i <= N - cnt - 1; ++i) {
    		    b[i] = a[i] || a[i + 1];
    		}
    		++cnt;
    		memcpy(a,b,sizeof(a));
    		
    	    }
    	    ans = min(ans,cnt);
    	}
        }
        out(ans);enter;
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
    }
    

    B - Colorful Hats

    如果最大值和最小值相等,要么最大值等于N - 1,否则就是最大值乘2小于N
    如果相差1,最小值的个数是t
    那么要满足最大值(t + 1leq A leq t + (N - t) / 2)

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define eps 1e-10
    #define MAXN 200005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 +c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    int N,a[MAXN];
    int tot;
    void Solve() {
        read(N);
        int maxx = 0,minn = N;
        for(int i = 1 ; i <= N ; ++i) {
    	read(a[i]);maxx = max(a[i],maxx);minn = min(a[i],minn);
        }
        if(maxx - minn > 1) {puts("No");return;}
        if(maxx == minn) {
    	if(maxx == N - 1) puts("Yes");
    	else if(maxx * 2 <= N)  puts("Yes");
    	else puts("No");
    	return;
        }
        
        for(int i = 1 ; i <= N ; ++i) {
    	if(a[i] == minn) ++tot;
        }
        if(maxx <= tot) {puts("No");return;}
        if(N - tot >= 2 * (maxx - tot)) {
    	puts("Yes");return;
        }
        puts("No");
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
    }
    

    C - +/- Rectangle

    如果(H)(h)的倍数并且(W)(w)的倍数,那么无解

    否则认为(H)不是(h)的倍数,以0开始标号,每个(h)的倍数的行都填成正数(1000(h - 1) - 1),其他行都填成-1000

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define eps 1e-10
    #define MAXN 200005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 +c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    int H,W,h,w;
    void Solve() {
        read(H);read(W);read(h);read(w);
        if(H % h != 0) {
    	puts("Yes");
    	for(int i = 0 ; i < H ; ++i) {
    	    for(int j = 0 ; j < W ; ++j) {
    		if(i % h == 0) {out(1000 * (h - 1) - 1);}
    		else out(-1000);
    		space;
    	    }
    	    enter;
    	}
        }
        else if(W % w != 0) {
    	puts("Yes");
    	for(int i = 0 ; i < H ; ++i) {
    	    for(int j = 0 ; j < W ; ++j) {
    		if(j % w == 0) {out(1000 * (w - 1) - 1);}
    		else out(-1000);
    		space;
    	    }
    	    enter;
    	}
        }
        else {
    	puts("No");
        }
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
    }
    

    D - XOR Replace

    相当于最后多了一个位置,是a的异或和,然后每次相当于交换最后多的这个位置上的数和选中的数

    然后我们按照权值建点,a和b对应位置的数值连边,起点为a的异或和,终点为多出来的数,这两点中间连一条边,我们需要每个联通块有欧拉回路,所以统计奇数点的个数,除2是附加边的个数,然后走完一个联通块到下一个联通块中不用走回来,所以是多连一条即可

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define MAXN 100005
    #define eps 1e-10
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef double db;
    template<class T>
    void read(T &res) {
    	res = 0;T f = 1;char c = getchar();
    	while(c < '0' || c > '9') {
    		if(c == '-') f = -1;
    		c = getchar();
    	}
    	while(c >= '0' && c <= '9') {
    		res = res * 10 + c - '0';
    		c = getchar();
    	}
    	res *= f;
    }
    template<class T>
    void out(T x) {
    	if(x < 0) {x = -x;putchar('-');}
    	if(x >= 10) {
    		out(x / 10);
    	}
    	putchar('0' + x % 10);
    }
    int a[MAXN],b[MAXN],N,val[MAXN],tot,st,ed,deg[MAXN],cnt;
    int fa[MAXN];
    map<int,int> zz;
    int getfa(int u) {
    	return fa[u] == u ? u : fa[u] = getfa(fa[u]);
    }
    void Init() {
    	read(N);
    	for(int i = 1 ; i <= N ; ++i) {read(a[i]);a[N + 1] ^= a[i];}
    	for(int i = 1 ; i <= N ; ++i) read(b[i]);
    	for(int i = 1 ; i <= N + 1 ; ++i) {
    		zz[a[i]]++;
    	}
    }
    void Solve() {
    	for(int i = 1 ; i <= N ; ++i) {
    		if(zz[b[i]] == 0) {
    			puts("-1");return;
    		}
    		zz[b[i]] -= 1;
    	}
    	st = a[N + 1];
    	for(int i = 1 ; i <= N + 1; ++i) {
    		val[++tot] = a[i];
    		if(zz[a[i]]) ed = a[i];
    	}
    	sort(val + 1,val + tot + 1);
    	tot = unique(val + 1,val + tot + 1) - val - 1;
    	st = lower_bound(val + 1,val + tot + 1,st) - val;
    	ed = lower_bound(val + 1,val + tot + 1,ed) - val;
    	for(int i = 1 ; i <= tot ; ++i) {
    		fa[i] = i;
    	}
    	for(int i = 1 ; i <= N ; ++i) {
    		if(a[i] != b[i]) {
    			int p = lower_bound(val + 1,val + tot + 1,a[i]) - val;
    			int q = lower_bound(val + 1,val + tot + 1,b[i]) - val;
    			++deg[p];++deg[q];
    			fa[getfa(p)] = getfa(q);
    			++cnt;
    		}
    	}
    	++deg[st];++deg[ed];
    	int p = 0;
    	for(int i = 1 ; i <= tot ; ++i) {
    		if(deg[i] & 1) ++p;
    	}
    	cnt += p / 2;
    	for(int i = 1 ; i <= tot ; ++i) {
    		if(deg[i]) {
    			if(getfa(i) != getfa(st)) {
    				fa[getfa(i)] = getfa(st);
    				cnt++;
    			}
    		}
    	}
    	out(cnt);enter;
    }
    int main() {
    #ifdef ivorysi
    	freopen("f1.in","r",stdin);
    #endif
    	Init();
    	Solve();
    }
    

    E - Poor Turkeys

    如果一个点集S在t次操作后不会被消灭,有四种情况

    (x_{t} in S,y_{t} in S)那么一定会被消灭

    如果(x_{t} in S,y_{t} otin S)那么前(t - 1)(S cup y_{t})必须得存在

    如果(x_{t} otin S,y_{t} in S)那么前(t - 1)(Scup x_{t})必须得存在

    如果(x_{t} otin S,y_{t} otin S)那么前(t - 1)(S)必须存在

    所以对于一个点(v)是否最后可以存在,那么可以用({v})往后倒推

    对于一个点对必须存在

    (v)不会被吃掉

    (u)不会被吃掉

    操作两个点对得到的集合没有相同的点

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define eps 1e-10
    #define MAXN 100005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
            if(c == '-') f = -1;
            c = getchar();
        }
        while(c >= '0' && c <= '9') {
            res = res * 10 +c - '0';
            c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
            out(x / 10);
        }
        putchar('0' + x % 10);
    }
    int N,M;
    int x[MAXN],y[MAXN];
    bool S[405][405],eat[405];
    void Solve() {
        read(N);read(M);
        for(int i = 1 ; i <= M ; ++i) {
            read(x[i]);read(y[i]);
        }
        for(int i = 1 ; i <= N ; ++i) {
            S[i][i] = 1;
            for(int j = M ; j >= 1 ; --j) {
                if(S[i][x[j]] && S[i][y[j]]) {eat[i] = 1;break;}
                else if(S[i][x[j]] && !S[i][y[j]]) S[i][y[j]] = 1;
                else if(!S[i][x[j]] && S[i][y[j]]) S[i][x[j]] = 1;
            }
        }
        int ans = 0;
        for(int i = 1 ; i <= N ; ++i) {
            for(int j = i + 1 ; j <= N ; ++j) {
                if(!eat[i] && !eat[j]) {
                    bool flag = 1;
                    for(int h = 1 ; h <= N ; ++h) {
                        if(S[i][h] && S[j][h]) {flag = 0;break;}
                    }
                    ans += flag;
                }
            }
        }
        out(ans);enter;
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
        return 0;
    }
    

    F - Games on DAG

    (dp[S])表示给(S)之间的点加边使得1和2的sg函数相同

    我们可以把(S)划分成两个点集(T)(U)保证这两个点集要么都有12,要么12一个都没有

    (U)之间没有边

    (U)(T)的边随意

    (T)(U)必须有一条边

    然后(T)之间的边连边方式是(dp[T])

    答案是(2^{M} - dp[2^{N} - 1])

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define eps 1e-10
    #define MAXN 100005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
            if(c == '-') f = -1;
            c = getchar();
        }
        while(c >= '0' && c <= '9') {
            res = res * 10 +c - '0';
            c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
            out(x / 10);
        }
        putchar('0' + x % 10);
    }
    const int MOD = 1000000007;
    int N,M;
    int c[16],dp[(1 << 15) + 5],cnt[(1 << 15) + 5],pw[100005];
    int inc(int a,int b) {
        return a + b >= MOD ? a + b - MOD : a + b;
    }
    int mul(int a,int b) {
        return 1LL * a * b % MOD;
    }
    int lowbit(int x) {
        return x & (-x);
    }
    void update(int &x,int y) {
        x = inc(x,y);
    }
    void Solve() {
        read(N);read(M);
        pw[0] = 1;
        for(int i = 1 ; i <= M ; ++i) pw[i] = mul(pw[i - 1],2);
        for(int i = 1 ; i < (1 << N) ; ++i) cnt[i] = cnt[i - lowbit(i)] + 1;
        int x,y;
        for(int i = 1 ; i <= M ; ++i) {
            read(x);read(y);
            c[x] |= 1 << y - 1;
        }
        dp[0] = 1;
        for(int S = 1 ; S < (1 << N) ; ++S) {
            if((S & 3) != 3 && (S & 3) != 0) continue;
            for(int T = S; T ; T = (T - 1) & S) {
                if((T & 3) != 3 && (T & 3) != 0) continue;
                int d = 1;
                for(int i = 1 ; i <= N ; ++i) {
                    if(T & (1 << i - 1)) d = mul(d,pw[cnt[c[i] & (S ^ T)]]);
                    if((S ^ T) & (1 << i - 1)) d = mul(d,pw[cnt[c[i] & T]] - 1);
                }
                d = mul(d,dp[S ^ T]);
                update(dp[S],d);
            }
        }
        out(inc(pw[M],MOD - dp[(1 << N) - 1]));enter;
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
        return 0;
    }
    
  • 相关阅读:
    【C语言】学习笔记8——结构struct(1)
    【算法导论】最大子数组——暴力求解
    【算法导论】最大子数组——递归
    【算法导论】二分查找
    【Linux】Linux服务器(centos7)环境搭建java/python3/nginx
    【算法导论】归并排序
    【C语言】第一个C语言小程序 —— 日期算法和万年历2
    【C语言】第一个C语言小程序 —— 日期算法和万年历
    【python】面向对象
    【java】对jdbc操作结果简单的映射封装
  • 原文地址:https://www.cnblogs.com/ivorysi/p/10633463.html
Copyright © 2020-2023  润新知