• 【LOJ】#2535. 「CQOI2018」九连环


    题解

    简单分析一下,有(k)个环肯定是,我拆掉了(k - 2)个,留最左两个,1步拆掉最左的,这个时候我还要把这(k - 2)个环拼回去,拆一次(k - 1)
    所以方案数就是(f[k] = f[k - 1] + 2 * f[k - 2] + 1)
    然而太简单了,简单的都不是省选题了,所以他没让你取模= =,让你写FFT的高精乘,强行增加代码量
    这个矩阵有几个位置默认是0,可以通过不对那里进行运算减小常数

    代码

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int, int>
    #define pdi pair<db, int>
    #define mp make_pair
    #define pb push_back
    #define enter putchar('
    ')
    #define space putchar(' ')
    #define eps 1e-8
    #define mo 974711
    #define MAXN 1000005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef double db;
    template <class T>
    void read(T &res) {
        res = 0;
        char c = getchar();
        T f = 1;
        while (c < '0' || c > '9') {
            if (c == '-') f = -1;
            c = getchar();
        }
        while (c >= '0' && c <= '9') {
            res = res * 10 + c - '0';
            c = getchar();
        }
        res *= f;
    }
    template <class T>
    void out(T x) {
        if (x < 0) {
            x = -x;
            putchar('-');
        }
        if (x >= 10) {
            out(x / 10);
        }
        putchar('0' + x % 10);
    }
    const int BASE = 10;
    const int len = 8;
    const int MOD = 998244353, MAXL = (1 << 20);
    int W[MAXL + 5];
    int inc(int a, int b) { return a + b >= MOD ? a + b - MOD : a + b; }
    int mul(int a, int b) { return 1LL * a * b % MOD; }
    int fpow(int x, int c) {
        int res = 1, t = x;
        while (c) {
            if (c & 1) res = 1LL * res * t % MOD;
            t = 1LL * t * t % MOD;
            c >>= 1;
        }
        return res;
    }
    struct Bignum {
        vector<int> v;
        Bignum() { *this = 0; }
        Bignum operator=(int64 x) {
            v.clear();
            do {
                v.pb(x % BASE);
                x /= BASE;
            } while (x);
            return *this;
        }
        friend Bignum operator+(const Bignum &a, const Bignum &b) {
            Bignum c;
            c.v.clear();
            int p = 0, g = 0;
            while (1) {
                int x = g;
                if (p < a.v.size()) x += a.v[p];
                if (p < b.v.size()) x += b.v[p];
                if (!x && p >= a.v.size() && p >= b.v.size()) break;
                c.v.pb(x % BASE);
                g = x / BASE;
                ++p;
            }
            return c;
        }
        friend void NTT(Bignum &a, int L, int on) {
            a.v.resize(L, 0);
            for (int i = 1, j = L >> 1; i < L - 1; ++i) {
                if (i < j) swap(a.v[i], a.v[j]);
                int k = L >> 1;
                while (j >= k) {
                    j -= k;
                    k >>= 1;
                }
                j += k;
            }
            for (int h = 2; h <= L; h <<= 1) {
                int wn = W[(MAXL + MAXL * on / h) % MAXL];
                for (int k = 0; k < L; k += h) {
                    int w = 1;
                    for (int j = k; j < k + h / 2; ++j) {
                        int u = a.v[j], t = mul(w, a.v[j + h / 2]);
                        a.v[j] = inc(u, t);
                        a.v[j + h / 2] = inc(u, MOD - t);
                        w = mul(w, wn);
                    }
                }
            }
            if (on == -1) {
                int InvL = fpow(L, MOD - 2);
                for (int i = 0; i < L; ++i) a.v[i] = mul(a.v[i], InvL);
            }
        }
        friend Bignum operator*(Bignum a, Bignum b) {
            Bignum c;
            int t = (a.v.size() + b.v.size()), L;
            L = 1;
            while (L <= t) L <<= 1;
            NTT(a, L, 1);
            NTT(b, L, 1);
            c.v.resize(L);
            for (int i = 0; i < L; ++i) c.v[i] = mul(a.v[i], b.v[i]);
            NTT(c, L, -1);
            int64 g = 0;
            for (int i = 0; i < L; ++i) {
                int64 x = g + c.v[i];
                c.v[i] = x % BASE;
                g = x / BASE;
            }
            while (g) {
                c.v.pb(g % BASE);
                g /= BASE;
            }
            L = c.v.size() - 1;
            while (L && c.v[L] == 0) {
                c.v.pop_back();
                --L;
            }
            return c;
        }
        void print() {
            for (int i = v.size() - 1; i >= 0; --i) {
                putchar('0' + v[i]);
            }
        }
    } num;
    struct Matrix {
        Bignum f[3][3];
        friend Matrix operator*(const Matrix &a, const Matrix &b) {
            Matrix c;
            c.f[2][2] = 1;
            for (int i = 0; i < 2; ++i) {
                for (int j = 0; j < 2; ++j) {
                    for (int k = 0; k < 2; ++k) {
                        c.f[i][j] = c.f[i][j] + a.f[i][k] * b.f[k][j];
                    }
                }
            }
            for (int j = 0; j < 2; ++j) {
                for (int k = 0; k < 3; ++k) {
                    c.f[2][j] = c.f[2][j] + a.f[2][k] * b.f[k][j];
                }
            }
            return c;
        }
    } A, ans;
    void Init() {
        W[0] = 1;
        W[1] = fpow(3, (MOD - 1) / MAXL);
        for (int i = 2; i < MAXL; ++i) {
            W[i] = mul(W[i - 1], W[1]);
        }
        A.f[0][0] = 1;
        A.f[0][1] = 1;
        A.f[1][0] = 2;
        A.f[2][0] = 1;
        A.f[2][2] = 1;
    }
    void fpow(Matrix &res, int c) {
        Matrix t = A;
        res = A;
        --c;
        while (c) {
            if (c & 1) res = res * t;
            t = t * t;
            c >>= 1;
        }
    }
    void Solve() {
        int N;
        read(N);
        if (N == 1) {
            puts("1");
        } else if (N == 2) {
            puts("2");
        } else {
            fpow(ans, N - 2);
            num = ans.f[0][0] + ans.f[0][0] + ans.f[1][0] + ans.f[2][0];
            num.print();
            enter;
        }
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in", "r", stdin);
    #endif
        Init();
        int T;
        read(T);
        while (T--) Solve();
        return 0;
    }
    
  • 相关阅读:
    paip.解决Invalid byte 2 of 2byte UTF8 sequence.
    poj1157
    poj1258
    poj1160
    poj1113
    poj1159
    !!!GRETA正则表达式模板类库
    【原创】C#与C++的混合编程采用其中的第三种方法
    WinApi.cs
    C#:正则表达式30分钟入门教程
  • 原文地址:https://www.cnblogs.com/ivorysi/p/10089414.html
Copyright © 2020-2023  润新知