题解
这计数题多水啊我怎么调了那么久啊
我不想老年化啊QAQ
(注意这里的二叉树带标号)
考虑(g[i])表示(i)个点二叉树所有节点的深度和,(f[i])表示(i)个点的二叉树两两节点之间的路径和
(h[i])表示(i)个点的二叉树的方案数(实际上就是(i!)= =)
对于一个(f[i])枚举左儿子大小(j),右儿子大小是(i - j - 1)
计算的时候就是
(g[i] = inom{i - 1}{j}(g[j] * h[i - j - 1] + g[i - j - 1] * h[j]))
(f[i] = inom{i - 1}{j}(f[j] * h[i - j - 1] +f[i - j - 1] * h[j]))
(f[i] += inom{i - 1}{j} (h[i - j - 1](g[j] + h[j] * j) + h[j](g[i - j - 1] + h[i - j - 1] * (i - j - 1))))
前面的组合数表示给左右儿子新分配的标号
左儿子大小为(j)时右儿子有(h[i - j - 1])中形态或标号不同的树和它搭配
最后(g[i] += h[i] * (i - 1))
然后(f[i] += g[i])
表示新加入的根节点所产生新的路径
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('
')
#define space putchar(' ')
#define eps 1e-8
#define MAXN 400005
#define mo 974711
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,P;
int f[2005],g[2005],h[2005],C[2005][2005];
int inc(int a,int b) {
return a + b >= P ? a + b - P : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % P;
}
void update(int &x,int y) {
x = inc(x,y);
}
void Solve() {
read(N);read(P);
C[0][0] = 1;
for(int i = 1 ; i <= N ; ++i) {
C[i][0] = 1;
for(int j = 1 ; j <= i ; ++j) {
C[i][j] = inc(C[i - 1][j - 1],C[i - 1][j]);
}
}
h[0] = 1;h[1] = 1;
for(int i = 2 ; i <= N ; ++i) {
for(int j = 0 ; j < i ; ++j) {
int t = mul(mul(h[j] , h[i - j - 1]) , C[i - 1][j]);
update(h[i],t);
update(g[i],mul(inc(mul(g[j],h[i - j - 1]) , mul(g[i - j - 1],h[j])) , C[i - 1][j]));
update(g[i],mul(t,i - 1));
update(f[i],mul(inc(mul(f[j] , h[i - j - 1]), mul(f[i - j - 1] , h[j])) , C[i - 1][j]));
int ta = mul(i - j - 1 , inc(g[j] , mul(h[j],j)));
int tb = mul(j , inc(g[i - j - 1] , mul(h[i - j - 1] , i - j - 1)));
update(f[i],mul(inc(mul(ta,h[i - j - 1]) , mul(tb,h[j])) , C[i - 1][j]));
}
update(f[i],g[i]);
}
out(f[N]);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}