• 【二叉树遍历】必知方式


    概述:本文主要讲述二叉树的前序、中序、后序遍历的递归与非递归实现及广度优先遍历、深度优先遍历和之字形遍历。

    正确的输出结果是:

    (1)先序遍历  以根左右的顺序进行遍历

    •  递归方式
    //<editor-fold desc="先序遍历-递归">
        private void preOrderTraversal(TreeNode root) {
            if (root == null) return;
            printNode(root);
            preOrderTraversal(root.left);
            preOrderTraversal(root.right);
        }
        // </editor-fold>
    • 非递归方式
    //<editor-fold desc="先序遍历-非递归">
        private void preOrderTraversal_stack(TreeNode root) {
            if (root == null) return;
            TreeNode node = root;
            Stack<TreeNode> stack = new Stack<>();
            while (node != null || !stack.isEmpty()) {
                if (node != null) {
                    printNode(node);
                    stack.push(node);
                    node = node.left;
                } else {
                    node = stack.pop();
                    node = node.right;
                }
            }
        }
        // </editor-fold>

    (2)中序遍历  以左根右的顺序进行遍历

    • 递归方式
    //<editor-fold desc="中序遍历-递归">
        private void inOrderTraversal(TreeNode root) {
            if (root == null) return;
            inOrderTraversal(root.left);
            printNode(root);
            inOrderTraversal(root.right);
        }
        // </editor-fold>
    • 非递归方式
    //<editor-fold desc="中序遍历-非递归">
        private void inOrderTraversal_stack(TreeNode root) {
            if (root == null) return;
            TreeNode node = root;
            Stack<TreeNode> stack = new Stack<>();
            while (node != null || !stack.isEmpty()) {
                if (node != null) {
                    stack.push(node);
                    node = node.left;
                } else {
                    node = stack.pop();
                    printNode(node);
                    node = node.right;
                }
            }
        }
        // </editor-fold>

    (3)后序遍历  以左右根的顺序进行遍历

    • 递归方式
     //<editor-fold desc="后序遍历-递归">
        private void postOrderTraversal(TreeNode root) {
            if (root == null) return;
            postOrderTraversal(root.left);
            postOrderTraversal(root.right);
            printNode(root);
        }
        // </editor-fold>
    • 非递归方式
    //<editor-fold desc="后序遍历-非递归">
        private void postOrderTraversal_stack(TreeNode root) {
            if (root == null) return;
            TreeNode node = root;
            Stack<TreeNode> stack = new Stack<>();
            Stack<TreeNode> outStack = new Stack<>();
            while (node != null || !stack.isEmpty()) {
                if (node != null) {
                    stack.push(node);
                    outStack.push(node);
                    node = node.right;
                } else {
                    node = stack.pop();
                    node = node.left;
                }
            }
            while (!outStack.isEmpty()) {
                printNode(outStack.pop());
            }
        }
        // </editor-fold>

    (4)广度优先遍历

    //<editor-fold desc="广度优先遍历">
        private void breadthFirstTraversal(TreeNode root) {
            if (root == null) return;
            ArrayDeque<TreeNode> deque = new ArrayDeque<>();
            deque.add(root);
            while (!deque.isEmpty()) {
                TreeNode node = deque.remove();
                printNode(node);
                if (node.left != null) {
                    deque.add(node.left);
                }
                if (node.right != null) {
                    deque.add(node.right);
                }
            }
    
        }
        // </editor-fold>

    (5)深度优先遍历

    //<editor-fold desc="深度优先遍历">
        private void depthFirstTraversal(TreeNode root) {
            if (root == null) return;
            Stack<TreeNode> stack = new Stack<>();
            stack.push(root);
            while (!stack.isEmpty()) {
                TreeNode node = stack.pop();
                printNode(node);
                if (node.right != null) {
                    stack.push(node.right);
                }
                if (node.left != null) {
                    stack.push(node.left);
                }
            }
        }
        // </editor-fold>

    (6)之字形遍历

    //<editor-fold desc="之字形遍历">
        private void zhiTraversal(TreeNode root) {
            if (root == null) return;
            Stack<TreeNode> stack1 = new Stack<>();
            Stack<TreeNode> stack2 = new Stack<>();
            stack1.push(root);
            int grade = 1;
            while (!stack1.isEmpty() || !stack2.isEmpty()) {
                if (grade % 2 == 1) {
                    while (!stack1.isEmpty()) {
                        TreeNode node = stack1.pop();
                        printNode(node);
                        if (node.right != null)
                            stack2.push(node.right);
                        if (node.left != null)
                            stack2.push(node.left);
                    }
                } else if (grade % 2 == 0) {//偶数行
                    while (!stack2.isEmpty()) {
                        TreeNode node = stack2.pop();
                        printNode(node);
                        if (node.left != null)
                            stack1.push(node.left);
                        if (node.right != null)
                            stack1.push(node.right);
                    }
                }
                grade++;
            }
    
        }
        // </editor-fold>

     完整代码如下

    public class TreeTraversal {
    
        public static void main(String[] args) {
            TreeTraversal traversal = new TreeTraversal();
            TreeNode root = traversal.initTree();
            System.out.println("先序遍历");
            traversal.preOrderTraversal(root);
            System.out.println("
    中序遍历");
            traversal.inOrderTraversal(root);
            System.out.println("
    后序遍历");
            traversal.postOrderTraversal(root);
            System.out.println("
    ================================
    先序遍历");
            traversal.preOrderTraversal_stack(root);
            System.out.println("
    中序遍历");
            traversal.inOrderTraversal_stack(root);
            System.out.println("
    后序遍历");
            traversal.postOrderTraversal_stack(root);
            System.out.println("
    ================================
    广度优先遍历");
            traversal.breadthFirstTraversal(root);
            System.out.println("
    深度优先遍历");
            traversal.depthFirstTraversal(root);
            System.out.println("
    之字形遍历");
            traversal.zhiTraversal(root);
        }
    
        private TreeNode initTree() {
            TreeNode J = new TreeNode(8, null, null);
            TreeNode H = new TreeNode(4, null, null);
            TreeNode G = new TreeNode(2, null, null);
            TreeNode F = new TreeNode(7, null, J);
            TreeNode E = new TreeNode(5, H, null);
            TreeNode D = new TreeNode(1, null, G);
            TreeNode C = new TreeNode(9, F, null);
            TreeNode B = new TreeNode(3, D, E);
            TreeNode A = new TreeNode(6, B, C);
            return A;   //返回根节点
        }
    
        private void printNode(TreeNode node) {
            System.out.print(node.val + " ");
        }
    
        //<editor-fold desc="先序遍历-递归">
        private void preOrderTraversal(TreeNode root) {
            if (root == null) return;
            printNode(root);
            preOrderTraversal(root.left);
            preOrderTraversal(root.right);
        }
        // </editor-fold>
    
        //<editor-fold desc="中序遍历-递归">
        private void inOrderTraversal(TreeNode root) {
            if (root == null) return;
            inOrderTraversal(root.left);
            printNode(root);
            inOrderTraversal(root.right);
        }
        // </editor-fold>
    
        //<editor-fold desc="后序遍历-递归">
        private void postOrderTraversal(TreeNode root) {
            if (root == null) return;
            postOrderTraversal(root.left);
            postOrderTraversal(root.right);
            printNode(root);
        }
        // </editor-fold>
    
        //<editor-fold desc="先序遍历-非递归">
        private void preOrderTraversal_stack(TreeNode root) {
            if (root == null) return;
            TreeNode node = root;
            Stack<TreeNode> stack = new Stack<>();
            while (node != null || !stack.isEmpty()) {
                if (node != null) {
                    printNode(node);
                    stack.push(node);
                    node = node.left;
                } else {
                    node = stack.pop();
                    node = node.right;
                }
            }
        }
        // </editor-fold>
    
        //<editor-fold desc="中序遍历-非递归">
        private void inOrderTraversal_stack(TreeNode root) {
            if (root == null) return;
            TreeNode node = root;
            Stack<TreeNode> stack = new Stack<>();
            while (node != null || !stack.isEmpty()) {
                if (node != null) {
                    stack.push(node);
                    node = node.left;
                } else {
                    node = stack.pop();
                    printNode(node);
                    node = node.right;
                }
            }
        }
        // </editor-fold>
    
        //<editor-fold desc="后序遍历-非递归">
        private void postOrderTraversal_stack(TreeNode root) {
            if (root == null) return;
            TreeNode node = root;
            Stack<TreeNode> stack = new Stack<>();
            Stack<TreeNode> outStack = new Stack<>();
            while (node != null || !stack.isEmpty()) {
                if (node != null) {
                    stack.push(node);
                    outStack.push(node);
                    node = node.right;
                } else {
                    node = stack.pop();
                    node = node.left;
                }
            }
            while (!outStack.isEmpty()) {
                printNode(outStack.pop());
            }
        }
        // </editor-fold>
    
        //<editor-fold desc="广度优先遍历">
        private void breadthFirstTraversal(TreeNode root) {
            if (root == null) return;
            ArrayDeque<TreeNode> deque = new ArrayDeque<>();
            deque.add(root);
            while (!deque.isEmpty()) {
                TreeNode node = deque.remove();
                printNode(node);
                if (node.left != null) {
                    deque.add(node.left);
                }
                if (node.right != null) {
                    deque.add(node.right);
                }
            }
    
        }
        // </editor-fold>
    
        //<editor-fold desc="深度优先遍历">
        private void depthFirstTraversal(TreeNode root) {
            if (root == null) return;
            Stack<TreeNode> stack = new Stack<>();
            stack.push(root);
            while (!stack.isEmpty()) {
                TreeNode node = stack.pop();
                printNode(node);
                if (node.right != null) {
                    stack.push(node.right);
                }
                if (node.left != null) {
                    stack.push(node.left);
                }
            }
        }
        // </editor-fold>
    
        //<editor-fold desc="之字形遍历">
        private void zhiTraversal(TreeNode root) {
            if (root == null) return;
            Stack<TreeNode> stack1 = new Stack<>();
            Stack<TreeNode> stack2 = new Stack<>();
            stack1.push(root);
            int grade = 1;
            while (!stack1.isEmpty() || !stack2.isEmpty()) {
                if (grade % 2 == 1) {
                    while (!stack1.isEmpty()) {
                        TreeNode node = stack1.pop();
                        printNode(node);
                        if (node.right != null)
                            stack2.push(node.right);
                        if (node.left != null)
                            stack2.push(node.left);
                    }
                } else if (grade % 2 == 0) {//偶数行
                    while (!stack2.isEmpty()) {
                        TreeNode node = stack2.pop();
                        printNode(node);
                        if (node.left != null)
                            stack1.push(node.left);
                        if (node.right != null)
                            stack1.push(node.right);
                    }
                }
                grade++;
            }
    
        }
        // </editor-fold>
    }
    View Code

     二叉树定义如下

    public class TreeNode {
        public int val = 0;
        public TreeNode left = null;
        public TreeNode right = null;
    
        public TreeNode(int val) {
            this.val = val;
        }
    
        public TreeNode(int val, TreeNode left, TreeNode right) {
            this.val = val;
            this.left = left;
            this.right = right;
        }
    }
    View Code
  • 相关阅读:
    (转)C# DllImport的用法
    (转)C#网络编程(异步传输字符串) Part.3
    (转)C#网络编程(订立协议和发送文件) Part.4
    C# tostring()汇总
    (转)C#网络编程(基本概念和操作) Part.1
    (转)关于数据库存储过程分页DatagridView BindingNavigator 控件的详细实现
    C# sql server 数据库备份和还原
    (转)C#网络编程(接收文件) Part.5
    2010年5月学习计划
    APUE学习笔记 Chapter 2 . Unix Standardization and Implementations
  • 原文地址:https://www.cnblogs.com/ivoo/p/10724977.html
Copyright © 2020-2023  润新知