原文:http://security.ctocio.com.cn/securitycomment/290/8182290.shtml
摘录一部分,其余的请看原文
五、高级验证码的破解分析
时间关系,我简单介绍如何利用图像处理和模式识别技术,自动识别比较高级的验证码。
(以风头正劲的Google为例)
1)至少从目前的AI的发展程度看,没有简单的做法能自动处理各种不同的验证码,即使能力很强,那么系统自然也十分复杂强大。所以,要想在很简单的算法实现比较高级的验证码破解,必须分析不同验证码算法的特点:
作为一般的图像处理和计算机视觉,会考虑色彩,纹理,形状等直接的特征,同时也考虑直方图,灰度等统计特征,还考虑FFT,Wavelet等各种变换后的特征。但最终目标都是Dimension Reduction(降维)然后利于识别,不仅仅是速度的考虑。从图像的角度看,很多系统都考虑转换为灰度级甚者黑白图片。
Google的图片可以看出,颜色变化是虚晃一枪,不存在任何处理难度。难度是字体变形和字符粘连。
如果能成功的分割字符,那么后期识别无论是用SVM等分类算法,还是分析笔顺比划走向来硬识别,都相对好做。
2)图像处理和粘连分割
代码中的part1目录主要完成图像预处理和粘连字符分割
001:将图像从jpg等格式转换为位图便于处理
002:采用Fix/Adaptive的Threshold门限算法,将图片Bin-Value二值化。(可用003算法)
003:采用OSTU分水岭算法,将图片Bin-Value二值化。(更通用,大部分时候效果更好)
005:获取ROI感兴趣的区域。
006:Edge Trace边缘跟踪。
007:Edge Detection边界检测。
008:Thin细化去骨架。
009:做了一些Tidy整理。(这个一般要根据特定的Captcha算法调整)
010:做切割,注意图片中红色的交叉点。
011:将边缘检测和骨干交叉点监测的图像合并。(合并过程可以做分析: 比如X坐标偏移门限分析,交叉点区域纹理分析,线条走势分析,等等各种方法,找出更可能的切分点和分离后部件的组合管理。)
代码:(代码质量不高,从其他项目拷贝过来,简单修改的。)
查看代码(./pstzine_09_01.txt)
注:在这里,我们可以看到,基本的部件(字母是分割开了,但可以造成统一字母的被切割成多个Component。 一种做法是:利用先验知识,做分割; 另外一种做法是,和第二部分的识别结合起来。 比如按照从左至右,尝试增加component来识别,如果不能识别而且component的总宽度,总面积还比较小,继续增加。 当然不排除拒识的可能性。)
3)字符部件组合和识别。
part2的代码展示了切割后的字母组合,和基于svm的字符识别的训练和识别过程。
Detection.cpp中展示了ImageSpam检测过程中的一些字符分割和组合,layout的分析和利用的简单技术。 而Google的验证码的识别,完全可以不用到,仅做参考。
SVM及使用:
本质上,SVM是一个分类器,原始的SVM是一个两类分类的分类器。可以通过1:1或者1:n的方式来组合成一个多类分类的分类器。 天生通过核函数的使用支持高维数据的分类。从几何意义上讲,就是找到最能表示类别特征的那些向量(支持向量SV),然后找到一条线,能最大化分类的Margin。
libSVM是一个不错的实现。
训练间断和识别阶段的数据整理和归一化是一样的。这里的简单做法是:
首先:
#define SVM_MAX +0.999
#define SVM_MIN +0.001
其次:
扫描黑白待识别字幕图片的每个像素,如果为0(黑色,是字母上的像素),那么svm中该位置就SVM_MAX,反之则反。
最后:
训练阶段,在svm的input的前面,为该类打上标记,即是那一个字母。
识别阶段,当然这个类别标记是SVM分类出来。
注意:
如果是SVM菜鸟,最好找一个在SVM外边做了包装的工具,比如样本选择,交叉验证,核函数选择这些,让程序自动选择和分析。
代码:通过ReginGrowth来提取单个单个的字符,然后开始识别。
查看代码(./pstzine_09_02.txt)