• ConcurrentLinkedQueue


    今天记录一个一个诡异的问题??一直不明白,希望看到的大佬,可以解答一下?

    犹如双缝干涉般的恐怖?debug和run竟然走不同的代码段(使用Idea测试)??????????

    代码演示:

    代码一,通过反射获取Unsafe对象:

    import sun.misc.Unsafe;
    
    import java.lang.reflect.Field;
    
    public class MyUnsafe {
        private static Unsafe unsafe;
    
        public static Unsafe Instance(){
            try {
                Field field = Unsafe.class.getDeclaredField("theUnsafe");
                field.setAccessible(true);
                unsafe = (Unsafe)field.get(null);
            } catch (Exception exception) {
                exception.printStackTrace();
            }
            return unsafe;
        }
    
    }

    代码段二,完全复制ConcurrentLinkedQueue源码,仅仅修改两点,一是修改类名为MyConcurrentLinkedQueue,二是改变Unsafe实例的获取方法,Unsafe unsafe = MyUnsafe.Instance();

    package concurrent.chapter7.chapter7_1;
    
    /*
     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     */
    
    /*
     *
     *
     *
     *
     *
     * Written by Doug Lea and Martin Buchholz with assistance from members of
     * JCP JSR-166 Expert Group and released to the public domain, as explained
     * at http://creativecommons.org/publicdomain/zero/1.0/
     */
    
    
    import concurrent.Unsafe.MyUnsafe;
    
    import java.util.AbstractQueue;
    import java.util.ArrayList;
    import java.util.Collection;
    import java.util.Iterator;
    import java.util.NoSuchElementException;
    import java.util.Queue;
    import java.util.Spliterator;
    import java.util.Spliterators;
    import java.util.function.Consumer;
    
    /**
     * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
     * This queue orders elements FIFO (first-in-first-out).
     * The <em>head</em> of the queue is that element that has been on the
     * queue the longest time.
     * The <em>tail</em> of the queue is that element that has been on the
     * queue the shortest time. New elements
     * are inserted at the tail of the queue, and the queue retrieval
     * operations obtain elements at the head of the queue.
     * A {@code ConcurrentLinkedQueue} is an appropriate choice when
     * many threads will share access to a common collection.
     * Like most other concurrent collection implementations, this class
     * does not permit the use of {@code null} elements.
     *
     * <p>This implementation employs an efficient <em>non-blocking</em>
     * algorithm based on one described in <a
     * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple,
     * Fast, and Practical Non-Blocking and Blocking Concurrent Queue
     * Algorithms</a> by Maged M. Michael and Michael L. Scott.
     *
     * <p>Iterators are <i>weakly consistent</i>, returning elements
     * reflecting the state of the queue at some point at or since the
     * creation of the iterator.  They do <em>not</em> throw {@link
     * java.util.ConcurrentModificationException}, and may proceed concurrently
     * with other operations.  Elements contained in the queue since the creation
     * of the iterator will be returned exactly once.
     *
     * <p>Beware that, unlike in most collections, the {@code size} method
     * is <em>NOT</em> a constant-time operation. Because of the
     * asynchronous nature of these queues, determining the current number
     * of elements requires a traversal of the elements, and so may report
     * inaccurate results if this collection is modified during traversal.
     * Additionally, the bulk operations {@code addAll},
     * {@code removeAll}, {@code retainAll}, {@code containsAll},
     * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
     * to be performed atomically. For example, an iterator operating
     * concurrently with an {@code addAll} operation might view only some
     * of the added elements.
     *
     * <p>This class and its iterator implement all of the <em>optional</em>
     * methods of the {@link Queue} and {@link Iterator} interfaces.
     *
     * <p>Memory consistency effects: As with other concurrent
     * collections, actions in a thread prior to placing an object into a
     * {@code ConcurrentLinkedQueue}
     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
     * actions subsequent to the access or removal of that element from
     * the {@code ConcurrentLinkedQueue} in another thread.
     *
     * <p>This class is a member of the
     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
     * Java Collections Framework</a>.
     *
     * @since 1.5
     * @author Doug Lea
     * @param <E> the type of elements held in this collection
     */
    public class MyConcurrentLinkedQueue<E> extends AbstractQueue<E>
            implements Queue<E>, java.io.Serializable {
        private static final long serialVersionUID = 196745693267521676L;
    
        /*
         * This is a modification of the Michael & Scott algorithm,
         * adapted for a garbage-collected environment, with support for
         * interior node deletion (to support remove(Object)).  For
         * explanation, read the paper.
         *
         * Note that like most non-blocking algorithms in this package,
         * this implementation relies on the fact that in garbage
         * collected systems, there is no possibility of ABA problems due
         * to recycled nodes, so there is no need to use "counted
         * pointers" or related techniques seen in versions used in
         * non-GC'ed settings.
         *
         * The fundamental invariants are:
         * - There is exactly one (last) Node with a null next reference,
         *   which is CASed when enqueueing.  This last Node can be
         *   reached in O(1) time from tail, but tail is merely an
         *   optimization - it can always be reached in O(N) time from
         *   head as well.
         * - The elements contained in the queue are the non-null items in
         *   Nodes that are reachable from head.  CASing the item
         *   reference of a Node to null atomically removes it from the
         *   queue.  Reachability of all elements from head must remain
         *   true even in the case of concurrent modifications that cause
         *   head to advance.  A dequeued Node may remain in use
         *   indefinitely due to creation of an Iterator or simply a
         *   poll() that has lost its time slice.
         *
         * The above might appear to imply that all Nodes are GC-reachable
         * from a predecessor dequeued Node.  That would cause two problems:
         * - allow a rogue Iterator to cause unbounded memory retention
         * - cause cross-generational linking of old Nodes to new Nodes if
         *   a Node was tenured while live, which generational GCs have a
         *   hard time dealing with, causing repeated major collections.
         * However, only non-deleted Nodes need to be reachable from
         * dequeued Nodes, and reachability does not necessarily have to
         * be of the kind understood by the GC.  We use the trick of
         * linking a Node that has just been dequeued to itself.  Such a
         * self-link implicitly means to advance to head.
         *
         * Both head and tail are permitted to lag.  In fact, failing to
         * update them every time one could is a significant optimization
         * (fewer CASes). As with LinkedTransferQueue (see the internal
         * documentation for that class), we use a slack threshold of two;
         * that is, we update head/tail when the current pointer appears
         * to be two or more steps away from the first/last node.
         *
         * Since head and tail are updated concurrently and independently,
         * it is possible for tail to lag behind head (why not)?
         *
         * CASing a Node's item reference to null atomically removes the
         * element from the queue.  Iterators skip over Nodes with null
         * items.  Prior implementations of this class had a race between
         * poll() and remove(Object) where the same element would appear
         * to be successfully removed by two concurrent operations.  The
         * method remove(Object) also lazily unlinks deleted Nodes, but
         * this is merely an optimization.
         *
         * When constructing a Node (before enqueuing it) we avoid paying
         * for a volatile write to item by using Unsafe.putObject instead
         * of a normal write.  This allows the cost of enqueue to be
         * "one-and-a-half" CASes.
         *
         * Both head and tail may or may not point to a Node with a
         * non-null item.  If the queue is empty, all items must of course
         * be null.  Upon creation, both head and tail refer to a dummy
         * Node with null item.  Both head and tail are only updated using
         * CAS, so they never regress, although again this is merely an
         * optimization.
         */
    
        private static class Node<E> {
            volatile E item;//数据域
            volatile Node<E> next;//指针域
    
            /**
             * Constructs a new node.  Uses relaxed write because item can
             * only be seen after publication via casNext.
             */
            Node(E item) {
                UNSAFE.putObject(this, itemOffset, item);
            }
    
            boolean casItem(E cmp, E val) {
                return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
            }
    
            void lazySetNext(Node<E> val) {
                UNSAFE.putOrderedObject(this, nextOffset, val);
            }
    
            boolean casNext(Node<E> cmp, Node<E> val) {
                return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
            }
    
            // Unsafe mechanics
    
            private static final sun.misc.Unsafe UNSAFE;
            private static final long itemOffset;
            private static final long nextOffset;
    
            static {
                try {
                    UNSAFE = MyUnsafe.Instance();//sun.misc.Unsafe.getUnsafe();
                    Class<?> k = Node.class;
                    itemOffset = UNSAFE.objectFieldOffset
                            (k.getDeclaredField("item"));
                    nextOffset = UNSAFE.objectFieldOffset
                            (k.getDeclaredField("next"));
                } catch (Exception e) {
                    throw new Error(e);
                }
            }
        }
    
        /**
         * A node from which the first live (non-deleted) node (if any)
         * can be reached in O(1) time.
         * Invariants:
         * - all live nodes are reachable from head via succ()
         * - head != null
         * - (tmp = head).next != tmp || tmp != head
         * Non-invariants:
         * - head.item may or may not be null.
         * - it is permitted for tail to lag behind head, that is, for tail
         *   to not be reachable from head!
         */
        private transient volatile Node<E> head;
    
        /**
         * A node from which the last node on list (that is, the unique
         * node with node.next == null) can be reached in O(1) time.
         * Invariants:
         * - the last node is always reachable from tail via succ()
         * - tail != null
         * Non-invariants:
         * - tail.item may or may not be null.
         * - it is permitted for tail to lag behind head, that is, for tail
         *   to not be reachable from head!
         * - tail.next may or may not be self-pointing to tail.
         */
        private transient volatile Node<E> tail;
    
        /**
         * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
         */
        public MyConcurrentLinkedQueue() {
            head = tail = new Node<E>(null);
        }
    
        /**
         * Creates a {@code ConcurrentLinkedQueue}
         * initially containing the elements of the given collection,
         * added in traversal order of the collection's iterator.
         *
         * @param c the collection of elements to initially contain
         * @throws NullPointerException if the specified collection or any
         *         of its elements are null
         */
        public MyConcurrentLinkedQueue(Collection<? extends E> c) {
            Node<E> h = null, t = null;
            for (E e : c) {
                checkNotNull(e);
                Node<E> newNode = new Node<E>(e);
                if (h == null)
                    h = t = newNode;
                else {
                    t.lazySetNext(newNode);
                    t = newNode;
                }
            }
            if (h == null)
                h = t = new Node<E>(null);
            head = h;
            tail = t;
        }
    
        // Have to override just to update the javadoc
    
        /**
         * Inserts the specified element at the tail of this queue.
         * As the queue is unbounded, this method will never throw
         * {@link IllegalStateException} or return {@code false}.
         *
         * @return {@code true} (as specified by {@link Collection#add})
         * @throws NullPointerException if the specified element is null
         */
        public boolean add(E e) {
            return offer(e);
        }
    
        /**
         * Tries to CAS head to p. If successful, repoint old head to itself
         * as sentinel for succ(), below.
         */
        final void updateHead(Node<E> h, Node<E> p) {
            if (h != p && casHead(h, p))
                h.lazySetNext(h);
        }
    
        /**
         * Returns the successor of p, or the head node if p.next has been
         * linked to self, which will only be true if traversing with a
         * stale pointer that is now off the list.
         */
        final Node<E> succ(Node<E> p) {
            Node<E> next = p.next;
            return (p == next) ? head : next;
        }
    
        /**
         * Inserts the specified element at the tail of this queue.
         * As the queue is unbounded, this method will never return {@code false}.
         *
         * @return {@code true} (as specified by {@link Queue#offer})
         * @throws NullPointerException if the specified element is null
         */
        public boolean offer(E e) {
            checkNotNull(e);
            final Node<E> newNode = new Node<E>(e);
    
            for (Node<E> t = tail, p = t;;) {
                Node<E> q = p.next;
    
                if (q == null) {//如果q == null,说明p是最后一个非空节点!
                    // p is last node
                    if (p.casNext(null, newNode)) {
                        // Successful CAS is the linearization point
                        // for e to become an element of this queue,
                        // and for newNode to become "live".
                        if (p != t) // hop two nodes at a time//p节点如果没有指向tail节点,
                            casTail(t, newNode);  // Failure is OK.//如果tail不是t,则tail = newNode;
                        return true;
                    }
                    // Lost CAS race to another thread; re-read next
                }
                else if (p == q) {
                    System.out.println("----Else If----");
                    // We have fallen off list.  If tail is unchanged, it
                    // will also be off-list, in which case we need to
                    // jump to head, from which all live nodes are always
                    // reachable.  Else the new tail is a better bet.
                    p = (t != (t = tail)) ? t : head;
                }
                else {
                    System.out.println("----Else----");
                    // Check for tail updates after two hops.
                    p = (p != t && t != (t = tail)) ? t : q;
                }
            }
        }
    
        public E poll() {
            restartFromHead:
            for (;;) {
                for (Node<E> h = head, p = h, q;;) {
                    E item = p.item;
    
                    if (item != null && p.casItem(item, null)) {
                        // Successful CAS is the linearization point
                        // for item to be removed from this queue.
                        if (p != h) // hop two nodes at a time
                            updateHead(h, ((q = p.next) != null) ? q : p);
                        return item;
                    }
                    else if ((q = p.next) == null) {
                        updateHead(h, p);
                        return null;
                    }
                    else if (p == q)
                        continue restartFromHead;
                    else
                        p = q;
                }
            }
        }
    
        public E peek() {
            restartFromHead:
            for (;;) {
                for (Node<E> h = head, p = h, q;;) {
                    E item = p.item;
                    if (item != null || (q = p.next) == null) {
                        updateHead(h, p);
                        return item;
                    }
                    else if (p == q)
                        continue restartFromHead;
                    else
                        p = q;
                }
            }
        }
    
        /**
         * Returns the first live (non-deleted) node on list, or null if none.
         * This is yet another variant of poll/peek; here returning the
         * first node, not element.  We could make peek() a wrapper around
         * first(), but that would cost an extra volatile read of item,
         * and the need to add a retry loop to deal with the possibility
         * of losing a race to a concurrent poll().
         */
        Node<E> first() {
            restartFromHead:
            for (;;) {
                for (Node<E> h = head, p = h, q;;) {
                    boolean hasItem = (p.item != null);
                    if (hasItem || (q = p.next) == null) {
                        updateHead(h, p);
                        return hasItem ? p : null;
                    }
                    else if (p == q)
                        continue restartFromHead;
                    else
                        p = q;
                }
            }
        }
    
        /**
         * Returns {@code true} if this queue contains no elements.
         *
         * @return {@code true} if this queue contains no elements
         */
        public boolean isEmpty() {
            return first() == null;
        }
    
        /**
         * Returns the number of elements in this queue.  If this queue
         * contains more than {@code Integer.MAX_VALUE} elements, returns
         * {@code Integer.MAX_VALUE}.
         *
         * <p>Beware that, unlike in most collections, this method is
         * <em>NOT</em> a constant-time operation. Because of the
         * asynchronous nature of these queues, determining the current
         * number of elements requires an O(n) traversal.
         * Additionally, if elements are added or removed during execution
         * of this method, the returned result may be inaccurate.  Thus,
         * this method is typically not very useful in concurrent
         * applications.
         *
         * @return the number of elements in this queue
         */
        public int size() {
            int count = 0;
            for (Node<E> p = first(); p != null; p = succ(p))
                if (p.item != null)
                    // Collection.size() spec says to max out
                    if (++count == Integer.MAX_VALUE)
                        break;
            return count;
        }
    
        /**
         * Returns {@code true} if this queue contains the specified element.
         * More formally, returns {@code true} if and only if this queue contains
         * at least one element {@code e} such that {@code o.equals(e)}.
         *
         * @param o object to be checked for containment in this queue
         * @return {@code true} if this queue contains the specified element
         */
        public boolean contains(Object o) {
            if (o == null) return false;
            for (Node<E> p = first(); p != null; p = succ(p)) {
                E item = p.item;
                if (item != null && o.equals(item))
                    return true;
            }
            return false;
        }
    
        /**
         * Removes a single instance of the specified element from this queue,
         * if it is present.  More formally, removes an element {@code e} such
         * that {@code o.equals(e)}, if this queue contains one or more such
         * elements.
         * Returns {@code true} if this queue contained the specified element
         * (or equivalently, if this queue changed as a result of the call).
         *
         * @param o element to be removed from this queue, if present
         * @return {@code true} if this queue changed as a result of the call
         */
        public boolean remove(Object o) {
            if (o != null) {
                Node<E> next, pred = null;
                for (Node<E> p = first(); p != null; pred = p, p = next) {
                    boolean removed = false;
                    E item = p.item;
                    if (item != null) {
                        if (!o.equals(item)) {
                            next = succ(p);
                            continue;
                        }
                        removed = p.casItem(item, null);
                    }
    
                    next = succ(p);
                    if (pred != null && next != null) // unlink
                        pred.casNext(p, next);
                    if (removed)
                        return true;
                }
            }
            return false;
        }
    
        /**
         * Appends all of the elements in the specified collection to the end of
         * this queue, in the order that they are returned by the specified
         * collection's iterator.  Attempts to {@code addAll} of a queue to
         * itself result in {@code IllegalArgumentException}.
         *
         * @param c the elements to be inserted into this queue
         * @return {@code true} if this queue changed as a result of the call
         * @throws NullPointerException if the specified collection or any
         *         of its elements are null
         * @throws IllegalArgumentException if the collection is this queue
         */
        public boolean addAll(Collection<? extends E> c) {
            if (c == this)
                // As historically specified in AbstractQueue#addAll
                throw new IllegalArgumentException();
    
            // Copy c into a private chain of Nodes
            Node<E> beginningOfTheEnd = null, last = null;
            for (E e : c) {
                checkNotNull(e);
                Node<E> newNode = new Node<E>(e);
                if (beginningOfTheEnd == null)
                    beginningOfTheEnd = last = newNode;
                else {
                    last.lazySetNext(newNode);
                    last = newNode;
                }
            }
            if (beginningOfTheEnd == null)
                return false;
    
            // Atomically append the chain at the tail of this collection
            for (Node<E> t = tail, p = t;;) {
                Node<E> q = p.next;
                if (q == null) {
                    // p is last node
                    if (p.casNext(null, beginningOfTheEnd)) {
                        // Successful CAS is the linearization point
                        // for all elements to be added to this queue.
                        if (!casTail(t, last)) {
                            // Try a little harder to update tail,
                            // since we may be adding many elements.
                            t = tail;
                            if (last.next == null)
                                casTail(t, last);
                        }
                        return true;
                    }
                    // Lost CAS race to another thread; re-read next
                }
                else if (p == q)
                    // We have fallen off list.  If tail is unchanged, it
                    // will also be off-list, in which case we need to
                    // jump to head, from which all live nodes are always
                    // reachable.  Else the new tail is a better bet.
                    p = (t != (t = tail)) ? t : head;
                else
                    // Check for tail updates after two hops.
                    p = (p != t && t != (t = tail)) ? t : q;
            }
        }
    
        /**
         * Returns an array containing all of the elements in this queue, in
         * proper sequence.
         *
         * <p>The returned array will be "safe" in that no references to it are
         * maintained by this queue.  (In other words, this method must allocate
         * a new array).  The caller is thus free to modify the returned array.
         *
         * <p>This method acts as bridge between array-based and collection-based
         * APIs.
         *
         * @return an array containing all of the elements in this queue
         */
        public Object[] toArray() {
            // Use ArrayList to deal with resizing.
            ArrayList<E> al = new ArrayList<E>();
            for (Node<E> p = first(); p != null; p = succ(p)) {
                E item = p.item;
                if (item != null)
                    al.add(item);
            }
            return al.toArray();
        }
    
        /**
         * Returns an array containing all of the elements in this queue, in
         * proper sequence; the runtime type of the returned array is that of
         * the specified array.  If the queue fits in the specified array, it
         * is returned therein.  Otherwise, a new array is allocated with the
         * runtime type of the specified array and the size of this queue.
         *
         * <p>If this queue fits in the specified array with room to spare
         * (i.e., the array has more elements than this queue), the element in
         * the array immediately following the end of the queue is set to
         * {@code null}.
         *
         * <p>Like the {@link #toArray()} method, this method acts as bridge between
         * array-based and collection-based APIs.  Further, this method allows
         * precise control over the runtime type of the output array, and may,
         * under certain circumstances, be used to save allocation costs.
         *
         * <p>Suppose {@code x} is a queue known to contain only strings.
         * The following code can be used to dump the queue into a newly
         * allocated array of {@code String}:
         *
         *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
         *
         * Note that {@code toArray(new Object[0])} is identical in function to
         * {@code toArray()}.
         *
         * @param a the array into which the elements of the queue are to
         *          be stored, if it is big enough; otherwise, a new array of the
         *          same runtime type is allocated for this purpose
         * @return an array containing all of the elements in this queue
         * @throws ArrayStoreException if the runtime type of the specified array
         *         is not a supertype of the runtime type of every element in
         *         this queue
         * @throws NullPointerException if the specified array is null
         */
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            // try to use sent-in array
            int k = 0;
            Node<E> p;
            for (p = first(); p != null && k < a.length; p = succ(p)) {
                E item = p.item;
                if (item != null)
                    a[k++] = (T)item;
            }
            if (p == null) {
                if (k < a.length)
                    a[k] = null;
                return a;
            }
    
            // If won't fit, use ArrayList version
            ArrayList<E> al = new ArrayList<E>();
            for (Node<E> q = first(); q != null; q = succ(q)) {
                E item = q.item;
                if (item != null)
                    al.add(item);
            }
            return al.toArray(a);
        }
    
        /**
         * Returns an iterator over the elements in this queue in proper sequence.
         * The elements will be returned in order from first (head) to last (tail).
         *
         * <p>The returned iterator is
         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
         *
         * @return an iterator over the elements in this queue in proper sequence
         */
        public Iterator<E> iterator() {
            return new Itr();
        }
    
        private class Itr implements Iterator<E> {
            /**
             * Next node to return item for.
             */
            private Node<E> nextNode;
    
            /**
             * nextItem holds on to item fields because once we claim
             * that an element exists in hasNext(), we must return it in
             * the following next() call even if it was in the process of
             * being removed when hasNext() was called.
             */
            private E nextItem;
    
            /**
             * Node of the last returned item, to support remove.
             */
            private Node<E> lastRet;
    
            Itr() {
                advance();
            }
    
            /**
             * Moves to next valid node and returns item to return for
             * next(), or null if no such.
             */
            private E advance() {
                lastRet = nextNode;
                E x = nextItem;
    
                Node<E> pred, p;
                if (nextNode == null) {
                    p = first();
                    pred = null;
                } else {
                    pred = nextNode;
                    p = succ(nextNode);
                }
    
                for (;;) {
                    if (p == null) {
                        nextNode = null;
                        nextItem = null;
                        return x;
                    }
                    E item = p.item;
                    if (item != null) {
                        nextNode = p;
                        nextItem = item;
                        return x;
                    } else {
                        // skip over nulls
                        Node<E> next = succ(p);
                        if (pred != null && next != null)
                            pred.casNext(p, next);
                        p = next;
                    }
                }
            }
    
            public boolean hasNext() {
                return nextNode != null;
            }
    
            public E next() {
                if (nextNode == null) throw new NoSuchElementException();
                return advance();
            }
    
            public void remove() {
                Node<E> l = lastRet;
                if (l == null) throw new IllegalStateException();
                // rely on a future traversal to relink.
                l.item = null;
                lastRet = null;
            }
        }
    
        /**
         * Saves this queue to a stream (that is, serializes it).
         *
         * @param s the stream
         * @throws java.io.IOException if an I/O error occurs
         * @serialData All of the elements (each an {@code E}) in
         * the proper order, followed by a null
         */
        private void writeObject(java.io.ObjectOutputStream s)
                throws java.io.IOException {
    
            // Write out any hidden stuff
            s.defaultWriteObject();
    
            // Write out all elements in the proper order.
            for (Node<E> p = first(); p != null; p = succ(p)) {
                Object item = p.item;
                if (item != null)
                    s.writeObject(item);
            }
    
            // Use trailing null as sentinel
            s.writeObject(null);
        }
    
        /**
         * Reconstitutes this queue from a stream (that is, deserializes it).
         * @param s the stream
         * @throws ClassNotFoundException if the class of a serialized object
         *         could not be found
         * @throws java.io.IOException if an I/O error occurs
         */
        private void readObject(java.io.ObjectInputStream s)
                throws java.io.IOException, ClassNotFoundException {
            s.defaultReadObject();
    
            // Read in elements until trailing null sentinel found
            Node<E> h = null, t = null;
            Object item;
            while ((item = s.readObject()) != null) {
                @SuppressWarnings("unchecked")
                Node<E> newNode = new Node<E>((E) item);
                if (h == null)
                    h = t = newNode;
                else {
                    t.lazySetNext(newNode);
                    t = newNode;
                }
            }
            if (h == null)
                h = t = new Node<E>(null);
            head = h;
            tail = t;
        }
    
        /** A customized variant of Spliterators.IteratorSpliterator */
        static final class CLQSpliterator<E> implements Spliterator<E> {
            static final int MAX_BATCH = 1 << 25;  // max batch array size;
            final MyConcurrentLinkedQueue<E> queue;
            Node<E> current;    // current node; null until initialized
            int batch;          // batch size for splits
            boolean exhausted;  // true when no more nodes
            CLQSpliterator(MyConcurrentLinkedQueue<E> queue) {
                this.queue = queue;
            }
    
            public Spliterator<E> trySplit() {
                Node<E> p;
                final MyConcurrentLinkedQueue<E> q = this.queue;
                int b = batch;
                int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
                if (!exhausted &&
                        ((p = current) != null || (p = q.first()) != null) &&
                        p.next != null) {
                    Object[] a = new Object[n];
                    int i = 0;
                    do {
                        if ((a[i] = p.item) != null)
                            ++i;
                        if (p == (p = p.next))
                            p = q.first();
                    } while (p != null && i < n);
                    if ((current = p) == null)
                        exhausted = true;
                    if (i > 0) {
                        batch = i;
                        return Spliterators.spliterator
                                (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
                                        Spliterator.CONCURRENT);
                    }
                }
                return null;
            }
    
            public void forEachRemaining(Consumer<? super E> action) {
                Node<E> p;
                if (action == null) throw new NullPointerException();
                final MyConcurrentLinkedQueue<E> q = this.queue;
                if (!exhausted &&
                        ((p = current) != null || (p = q.first()) != null)) {
                    exhausted = true;
                    do {
                        E e = p.item;
                        if (p == (p = p.next))
                            p = q.first();
                        if (e != null)
                            action.accept(e);
                    } while (p != null);
                }
            }
    
            public boolean tryAdvance(Consumer<? super E> action) {
                Node<E> p;
                if (action == null) throw new NullPointerException();
                final MyConcurrentLinkedQueue<E> q = this.queue;
                if (!exhausted &&
                        ((p = current) != null || (p = q.first()) != null)) {
                    E e;
                    do {
                        e = p.item;
                        if (p == (p = p.next))
                            p = q.first();
                    } while (e == null && p != null);
                    if ((current = p) == null)
                        exhausted = true;
                    if (e != null) {
                        action.accept(e);
                        return true;
                    }
                }
                return false;
            }
    
            public long estimateSize() { return Long.MAX_VALUE; }
    
            public int characteristics() {
                return Spliterator.ORDERED | Spliterator.NONNULL |
                        Spliterator.CONCURRENT;
            }
        }
    
        /**
         * Returns a {@link Spliterator} over the elements in this queue.
         *
         * <p>The returned spliterator is
         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
         *
         * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
         * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
         *
         * @implNote
         * The {@code Spliterator} implements {@code trySplit} to permit limited
         * parallelism.
         *
         * @return a {@code Spliterator} over the elements in this queue
         * @since 1.8
         */
        @Override
        public Spliterator<E> spliterator() {
            return new MyConcurrentLinkedQueue.CLQSpliterator<E>(this);
        }
    
        /**
         * Throws NullPointerException if argument is null.
         *
         * @param v the element
         */
        private static void checkNotNull(Object v) {
            if (v == null)
                throw new NullPointerException();
        }
    
        private boolean casTail(Node<E> cmp, Node<E> val) {
            return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
        }
    
        private boolean casHead(Node<E> cmp, Node<E> val) {
            return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
        }
    
        // Unsafe mechanics
    
        private static final sun.misc.Unsafe UNSAFE;
        private static final long headOffset;
        private static final long tailOffset;
        static {
            try {
                UNSAFE = MyUnsafe.Instance();//sun.misc.Unsafe.getUnsafe();
                Class<?> k = MyConcurrentLinkedQueue.class;
                headOffset = UNSAFE.objectFieldOffset
                        (k.getDeclaredField("head"));
                tailOffset = UNSAFE.objectFieldOffset
                        (k.getDeclaredField("tail"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    }

    测试:

    public class TestConcurrentLinkedQueue {
    
    
    
    
        public static void main(String[] args) throws Exception {
    
            MyConcurrentLinkedQueue<Integer> concurrentLinkedQueue = new MyConcurrentLinkedQueue();
            concurrentLinkedQueue.offer(100);
    
            concurrentLinkedQueue.offer(200);
            System.out.println(concurrentLinkedQueue.size());
    
    
    
        }
    }

    dubug输出:

    run输出:

    问题:为什么在offer第二个元素的时候?debug和run会走不同的代码块??

  • 相关阅读:
    Git学习的网址
    (转)读懂diff
    如何让Beamer的logo放在右上角
    测试面试的一些分享
    python学习-使用制表符或者换行符来添加空白
    python学习-python变量的命名和使用
    python学习-运行.py时,python做了啥
    2020年,很特殊的1年
    python md5验签
    postman使用当前时间戳
  • 原文地址:https://www.cnblogs.com/iuyy/p/13544748.html
Copyright © 2020-2023  润新知