http://www.gamedev.net/blog/950/entry-2249317-a-guide-to-getting-
started-with-boostasio?pg=9
8. Networking basics: binary protocol sending and receiving (TCP)
现在我们了解了boost::asio库和一些简单的tcp网络知识。现在进行一些简单的网路底层封装.通过使用这些分装。我们能重复使用并且将
注意力集中在程序逻辑而不是一再编写网络通讯代码。
重要注意事项:代码完全是出于教育目的。不要在商业系统中使用。
另外 使用这个网络封装代码的开销是需要考虑的。比如说,大量的vector与list的分配。bind与shared_ptr指针的开销。这也是这个代码
仅用来作为教育用途的原因。
有多重类型的函数用来发送和接收。我们基于协议选择不同的类型。
我们的例子中使用async_write and async_read_some.
使用async_write的原因是函数写入所有的数据,而无需担心部分发送的问题。同样的,我们使用async_read_some作为通用函数去读取数
据因为我们没有特定的协议用来接收。
现在我们学习一个完整的使用IO函数的例子。我们扩展7-C的例子。
#include <boost/asio.hpp> #include <boost/shared_ptr.hpp> #include <boost/thread.hpp> #include <boost/thread/mutex.hpp> #include <boost/bind.hpp> #include <boost/lexical_cast.hpp> #include <boost/cstdint.hpp> #include <boost/enable_shared_from_this.hpp> #include <iostream> #include <string> boost::mutex global_stream_lock; void WorkerThread( boost::shared_ptr< boost::asio::io_service > io_service ) { global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Thread Start" << std::endl; global_stream_lock.unlock(); while( true ) { try { boost::system::error_code ec; io_service->run( ec ); if( ec ) { global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Error: " << ec << std::endl; global_stream_lock.unlock(); } break; } catch( std::exception & ex ) { global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Exception: " << ex.what() << std::endl; global_stream_lock.unlock(); } } global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Thread Finish" << std::endl; global_stream_lock.unlock(); } struct ClientContext : public boost::enable_shared_from_this< ClientContext > { boost::asio::ip::tcp::socket m_socket; std::vector< boost::uint8_t > m_recv_buffer; size_t m_recv_buffer_index; std::list< std::vector< boost::uint8_t > > m_send_buffer; ClientContext( boost::asio::io_service & io_service ) : m_socket( io_service ), m_recv_buffer_index( 0 ) { m_recv_buffer.resize( 4096 ); } ~ClientContext() { } void Close() { boost::system::error_code ec; m_socket.shutdown( boost::asio::ip::tcp::socket::shutdown_both, ec ); m_socket.close( ec ); } void OnSend( const boost::system::error_code & ec, std::list< std::vector< boost::uint8_t > >::iterator itr ) { if( ec ) { global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Error: " << ec << std::endl; global_stream_lock.unlock(); Close(); } else { global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Sent " << (*itr).size() << " bytes." << std::endl; global_stream_lock.unlock(); } m_send_buffer.erase( itr ); // Start the next pending send if( !m_send_buffer.empty() ) { boost::asio::async_write( m_socket, boost::asio::buffer( m_send_buffer.front() ), boost::bind( &ClientContext::OnSend, shared_from_this(), boost::asio::placeholders::error, m_send_buffer.begin() ) ); } } void Send( const void * buffer, size_t length ) { bool can_send_now = false; std::vector< boost::uint8_t > output; std::copy( (const boost::uint8_t *)buffer, (const boost::uint8_t *)buffer + length, std::back_inserter( output ) ); // Store if this is the only current send or not can_send_now = m_send_buffer.empty(); // Save the buffer to be sent m_send_buffer.push_back( output ); // Only send if there are no more pending buffers waiting! if( can_send_now ) { // Start the next pending send boost::asio::async_write( m_socket, boost::asio::buffer( m_send_buffer.front() ), boost::bind( &ClientContext::OnSend, shared_from_this(), boost::asio::placeholders::error, m_send_buffer.begin() ) ); } } void OnRecv( const boost::system::error_code & ec, size_t bytes_transferred ) { if( ec ) { global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Error: " << ec << std::endl; global_stream_lock.unlock(); Close(); } else { // Increase how many bytes we have saved up m_recv_buffer_index += bytes_transferred; // Debug information global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Recv " << bytes_transferred << " bytes." << std::endl; global_stream_lock.unlock(); // Dump all the data global_stream_lock.lock(); for( size_t x = 0; x < m_recv_buffer_index; ++x ) { std::cout << std::hex << std::setfill( '0' ) << std::setw( 2 ) << (int)m_recv_buffer[ x ] << " "; if( ( x + 1 ) % 16 == 0 ) { std::cout << std::endl; } } std::cout << std::endl << std::dec; global_stream_lock.unlock(); // Discard all the data (virtually, not physically!) m_recv_buffer_index = 0; // Start the next recv cycle Recv(); } } void Recv() { m_socket.async_read_some( boost::asio::buffer( &m_recv_buffer[ m_recv_buffer_index ], m_recv_buffer.size() - m_recv_buffer_index ), boost::bind( &ClientContext::OnRecv, shared_from_this(), _1, _2 ) ); } }; void OnAccept( const boost::system::error_code & ec, boost::shared_ptr< ClientContext > client ) { if( ec ) { global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Error: " << ec << std::endl; global_stream_lock.unlock(); } else { global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Accepted!" << std::endl; global_stream_lock.unlock(); // 2 bytes message size, followed by the message client->Send( "\x02\x00Hi", 6 ); client->Recv(); } } int main( int argc, char * argv[] ) { boost::shared_ptr< boost::asio::io_service > io_service( new boost::asio::io_service ); boost::shared_ptr< boost::asio::io_service::work > work( new boost::asio::io_service::work( *io_service ) ); boost::shared_ptr< boost::asio::io_service::strand > strand( new boost::asio::io_service::strand( *io_service ) ); global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Press [return] to exit." << std::endl; global_stream_lock.unlock(); // 1 worker thread so we do not have to deal with thread safety issues boost::thread_group worker_threads; for( int x = 0; x < 1; ++x ) { worker_threads.create_thread( boost::bind( &WorkerThread, io_service ) ); } boost::shared_ptr< boost::asio::ip::tcp::acceptor > acceptor( new boost::asio::ip::tcp::acceptor( *io_service ) ); boost::shared_ptr< ClientContext > client( new ClientContext( *io_service ) ); try { boost::asio::ip::tcp::resolver resolver( *io_service ); boost::asio::ip::tcp::resolver::query query( "127.0.0.1", boost::lexical_cast< std::string >( 7777 ) ); boost::asio::ip::tcp::endpoint endpoint = *resolver.resolve( query ); acceptor->open( endpoint.protocol() ); acceptor->set_option( boost::asio::ip::tcp::acceptor::reuse_address( false ) ); acceptor->bind( endpoint ); acceptor->listen( boost::asio::socket_base::max_connections ); acceptor->async_accept( client->m_socket, boost::bind( OnAccept, _1, client ) ); global_stream_lock.lock(); std::cout << "Listening on: " << endpoint << std::endl; global_stream_lock.unlock(); } catch( std::exception & ex ) { global_stream_lock.lock(); std::cout << "[" << boost::this_thread::get_id() << "] Exception: " << ex.what() << std::endl; global_stream_lock.unlock(); } std::cin.get(); boost::system::error_code ec; acceptor->close( ec ); io_service->stop(); worker_threads.join_all(); return 0; }
这个例子中,我们添加了ClientContext 类。它用来存储所有传入连接的上下文的具体结构。类封装了必须的io接收发送的函数。例子中
,服务器将发送一个具体的信息给传入连接。我们没配置一个具体的客户端去测试,仅仅使用简单的telnet即可。任意数据发送到服务器
将被输出到命令行。
同上一个例子不同的是,每个连接都需要自己的上下文。上下文应包含socket 发送接收缓存以及其他用户数据。另外,例子不是线程安装
的,所以我们限制在一个线程运行。我们将稍后讨论这个问题。现在,对于socket的读写将选择正确的api函数以避免发生问题.
为了正确的使用,我们必须确认上下文和缓存在函数的生存的整个期间都是有效的。这个例子中,我们使用一个vector list来发送,使用一个vector来接收缓存。根据我们实现的协议,我们可能需要做一些小小的改动。比如说,如果我们想处理流中的包。这种情况下,我们将希望使用async_read读取头结构然后使用async_read读取具体尺寸的数据。
在大型程序中,一次只处理一个包的缺点就是效率低下。假设我们有1003字节信息在流中。我们将执行读取包这个逻辑100次。而我们使用async_read_some,效率会更高。