• 如何确定Hadoop中map和reduce的个数--map和reduce数量之间的关系是什么?


    一般情况下,在输入源是文件的时候,一个task的map数量由splitSize来决定的,那么splitSize是由以下几个来决定的
    goalSize = totalSize / mapred.map.tasks
    inSize = max {mapred.min.split.size, minSplitSize}
    splitSize = max (minSize, min(goalSize, dfs.block.size))
    一个task的reduce数量,由partition决定。
    在输入源是数据库的情况下,比如mysql,对于map的数量需要用户自己指定,比如
    jobconf.set(“mapred.map.tasks.nums”,20);
    如果数据源是HBase的话,map的数量就是该表对应的region数量。
    map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败。所以用户在提交map/reduce作业时应该在一个合理的范围内,这样既可以增强系统负载匀衡,也可以降低任务失败的开销。

    1 map的数量
    map的数量通常是由hadoop集群的DFS块大小确定的,也就是输入文件的总块数,正常的map数量的并行规模大致是每一个Node是10~100个,对于CPU消耗较小的作业可以设置Map数量为300个左右,但是由于hadoop的每一个任务在初始化时需要一定的时间,因此比较合理的情况是每个map执行的时间至少超过1分钟。具体的数据分片是这样的,InputFormat在默认情况下会根据hadoop集群的DFS块大小进行分片,每一个分片会由一个map任务来进行处理,当然用户还是可以通过参数mapred.min.split.size参数在作业提交客户端进行自定义设置。还有一个重要参数就是mapred.map.tasks,这个参数设置的map数量仅仅是一个提示,只有当InputFormat 决定了map任务的个数比mapred.map.tasks值小时才起作用。同样,Map任务的个数也能通过使用JobConf 的conf.setNumMapTasks(int num)方法来手动地设置。这个方法能够用来增加map任务的个数,但是不能设定任务的个数小于Hadoop系统通过分割输入数据得到的值。当然为了提高集群的并发效率,可以设置一个默认的map数量,当用户的map数量较小或者比本身自动分割的值还小时可以使用一个相对交大的默认值,从而提高整体hadoop集群的效率。

    2 reduece的数量
    reduce在运行时往往需要从相关map端复制数据到reduce节点来处理,因此相比于map任务。reduce节点资源是相对比较缺少的,同时相对运行较慢,正确的reduce任务的个数应该是0.95或者1.75 *(节点数 × mapred.tasktracker.tasks.maximum参数值)。如果任务数是节点个数的0.95倍,那么所有的reduce任务能够在 map任务的输出传输结束后同时开始运行。如果任务数是节点个数的1.75倍,那么高速的节点会在完成他们第一批reduce任务计算之后开始计算第二批 reduce任务,这样的情况更有利于负载均衡。同时需要注意增加reduce的数量虽然会增加系统的资源开销,但是可以改善负载匀衡,降低任务失败带来的负面影响。同样,Reduce任务也能够与 map任务一样,通过设定JobConf 的conf.setNumReduceTasks(int num)方法来增加任务个数。

  • 相关阅读:
    要搜索内容
    .net core 过滤器
    C# => 写法
    js 数组的forEach 函数
    .net core 下载文件 其他格式
    win10 1903 更改文字大小
    fetch 写法
    C# 匿名对象 增加属性
    ping —— 虚拟机
    selenium验证车贷计算器算法
  • 原文地址:https://www.cnblogs.com/itboys/p/6516695.html
Copyright © 2020-2023  润新知