• Android.mk


     

    Introduction:
    -------------
    
    This document describes the syntax of Android.mk build file
    written to describe your C and C++ source files to the Android
    NDK. To understand what follows, it is assumed that you have
    read the docs/OVERVIEW.html file that explains their role and
    usage.
    
    Overview:
    ---------
    
    An Android.mk file is written to describe your sources to the
    build system. More specifically:
    
    Android.mk文件是用于向编译系统描述源代码的,具体如下: - The file is really a tiny GNU Makefile fragment that will be parsed one or more times by the build system. As such, you should try to minimize the variables you declare there and do not assume that anything is not defined during parsing.
    Android.mk文件时make文件的一个缩小版,他将会被编译系统执行一次或者多次。 程序员需要在Android.mk文件中尽量减少变量的定义。
    - The file syntax is designed to allow you to group your sources into 'modules'. A module is one of the following: - a static library - a shared library Only shared libraries will be installed/copied to your application package. Static libraries can be used to generate shared libraries though. You can define one or more modules in each Android.mk file, and you can use the same source file in several modules. Android.mk文件的语法指定了源码可以打包成一个“模块”。一个模块可以是静态库,或者动态库
    只有动态库才会安装或者复制到应用包中。静态库可以用于产生动态库。
    可以在Android.mk文件中定义一个或者多个模块。而且可以在不同的模块中使用相同的源代码。


    - The build system handles many details for you. For example, you don't need to list header files or explicit dependencies between generated files in your Android.mk. The NDK build system will compute these automatically for you. This also means that, when updating to newer releases of the NDK, you should be able to benefit from new toolchain/platform support without having to touch your Android.mk files. Note that the syntax is *very* close to the one used in Android.mk files distributed with the full open-source Android platform sources. While the build system implementation that uses them is different, this is an intentional design decision made to allow reuse of 'external' libraries' source code easier for application developers.
    编译系统可以自动处理Android.mk文件中的许多细节。比如,对于Android.mk文件中的源代码,程序员不需要列出头文件,或者显示的列出源代码的依赖文件。NDK编译系统会自动计算出所需的
    头文件以及依赖文件。
    记住,整个android源码发布时,里面是有大量的Android.mk文件的,而其中的语法与程序员写的Android.mk文件的语法是非常相近的。

    Simple example: --------------- Before describing the syntax in details, let's consider the simple "hello JNI" example, i.e. the files under: 在具体描述语法之前,先来看一个例子:
    samples/hello-jni Here, we can see:
    我们可以看到: - The 'src' directory containing the Java sources for the sample Android project.
    src目录包含了java的源代码。
    - The 'jni' directory containing the native source for the sample, i.e. 'jni/hello-jni.c' This source file implements a simple shared library that implements a native method that returns a string to the VM application.
    jni目录包含了本地代码,也就是C代码。C代码可以被编译为一个动态库,库中有一个方法,向VN应用返回一个字符串。 - The 'jni/Android.mk' file that describes the shared library to the NDK build system. Its content is:
    Android.mk文件向NDK系统描述了要生成的动态库的信息: ---------- cut here ------------------ LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) LOCAL_MODULE := hello-jni LOCAL_SRC_FILES := hello-jni.c include $(BUILD_SHARED_LIBRARY) ---------- cut here ------------------ Now, let's explain these lines: LOCAL_PATH := $(call my-dir) An Android.mk file must begin with the definition of the LOCAL_PATH variable. It is used to locate source files in the development tree. In this example, the macro function 'my-dir', provided by the build system, is used to return the path of the current directory (i.e. the directory containing the Android.mk file itself).
    一个Android.mk文件必须从定义“LOCAL_PATH”变量开始。这个变量被用来定位源代码的位置。在这个例子中,函数 my-dir是由系统提供的,它被用来返回当前目录的路径,比如包含Android.mk
    文件的路径。往往是。。。jni/。
    include $(CLEAR_VARS) The CLEAR_VARS variable is provided by the build system and points to a special GNU Makefile that will clear many LOCAL_XXX variables for you (e.g. LOCAL_MODULE, LOCAL_SRC_FILES, LOCAL_STATIC_LIBRARIES, etc...), with the exception of LOCAL_PATH. This is needed because all build control files are parsed in a single GNU Make execution context where all variables are global.
    CLEAR_VARS变量也是由系统提供的,它指向一个特殊的make文件,这个make文件将会为程序员清理很多“LOCAL_XXX”变量,比如 LOCAL_MODULE, LOCAL_SRC_FILES, LOCAL_STATIC_LIBRARIES
    等等等。其中,LOCAL-path是个例外,他是不会被清理的。因为所有编译控制文件都需要在一个单独的make执行上下文中解析,这个上下文应该就是LOCAL-path,而且在这个上下文中,
    所有的变量都是全局的。
    LOCAL_MODULE := hello-jni The LOCAL_MODULE variable must be defined to identify each module you describe in your Android.mk. The name must be *unique* and not contain any spaces. Note that the build system will automatically add proper prefix and suffix to the corresponding generated file. In other words, a shared library module named 'foo' will generate 'libfoo.so'.
    LOCAL_MODULE变量用于定义每一个要生成的模块的名称。名称必须是唯一的而且不包含任何空格。记住,编译系统会自动在生成的模块的名字前后加上前后缀。
    IMPORTANT NOTE: If you name your module 'libfoo', the build system will not add another 'lib' prefix and will generate libfoo.so as well. This is to support Android.mk files that originate from the Android platform sources, would you need to use these.
    如果程序员将模块的名字命名为libfoo,编译系统将不会添加lib的前缀,也会正常生成libfoo.so。
    LOCAL_SRC_FILES := hello-jni.c The LOCAL_SRC_FILES variables must contain a list of C and/or C++ source files that will be built and assembled into a module. Note that you should not list header and included files here, because the build system will compute dependencies automatically for you; just list the source files that will be passed directly to a compiler, and you should be good.
    LOCAL_SRC_FILES变量必须包含一系列的C/C++源代码,这些源代码将会被编译,并且集成进一个模块。记住,在这里不能添加头文件,因为编译系统会自动计算出这些源代码依赖的文件。
    因此,只需列出源代码即可。
    Note that the default extension for C++ source files is '.cpp'. It is however possible to specify a different one by defining the variable LOCAL_CPP_EXTENSION. Don't forget the initial dot (i.e. '.cxx' will work, but not 'cxx').
    注意,C++文件的默认后缀是cpp。然而,程序员可以通过定义变量LOCAL-cpp-extension来指定其他的后缀,比如.cxx等。 include $(BUILD_SHARED_LIBRARY) The BUILD_SHARED_LIBRARY is a variable provided by the build system that points to a GNU Makefile script that is in charge of collecting all the information you defined in LOCAL_XXX variables since the latest 'include $(CLEAR_VARS)' and determine what to build, and how to do it exactly. There is also BUILD_STATIC_LIBRARY to generate a static library. BUILD_SHARED_LIBRARY变量指向一个make文件,这个文件负责收集所有local_xxx变量的值,然后决定什么需要编译,以及如何编译。

    There are more complex examples in the samples directories, with commented Android.mk files that you can look at. Reference: ---------- This is the list of variables you should either rely on or define in an Android.mk. You can define other variables for your own usage, but the NDK build system reserves the following variable names: 下面列出的是程序员在Android.mk文件中经常会遇到的变量。当然,程序员也可以自己定义变量,但是不能与NDK系统已经定义的名字重合。NDK已经定义的名字有:

    - names that begin with LOCAL_ (e.g. LOCAL_MODULE) - names that begin with PRIVATE_, NDK_ or APP_ (used internally) - lower-case names (used internally, e.g. 'my-dir') If you need to define your own convenience variables in an Android.mk file, we recommend using the MY_ prefix, for a trivial example:
    如果程序员需要定义自己的变量,建议使用以MY_开头的变量,比如 ---------- cut here ------------------ MY_SOURCES := foo.c ifneq ($(MY_CONFIG_BAR),) MY_SOURCES += bar.c endif LOCAL_SRC_FILES += $(MY_SOURCES) ---------- cut here ------------------ So, here we go: NDK-provided variables: - - - - - - - - - - - - These GNU Make variables are defined by the build system before your Android.mk file is parsed. Note that under certain circumstances the NDK might parse your Android.mk several times, each with different definition for some of these variables.
    我们来看看NDK系统已经定义好的变量。注意,在某些场合下,NDK会解析Android.mk文件好几次:
    CLEAR_VARS Points to a build script that undefines nearly all LOCAL_XXX variables listed in the "Module-description" section below. You must include the script before starting a new module, e.g.: include $(CLEAR_VARS)
    include命令包含的其实是另一个脚本。

    BUILD_SHARED_LIBRARY Points to a build script that collects all the information about the module you provided in LOCAL_XXX variables and determines how to build a target shared library from the sources you listed. Note that you must have LOCAL_MODULE and LOCAL_SRC_FILES defined, at a minimum before including this file. Example usage: include $(BUILD_SHARED_LIBRARY) note that this will generate a file named lib$(LOCAL_MODULE).so BUILD_STATIC_LIBRARY A variant of BUILD_SHARED_LIBRARY that is used to build a target static library instead. Static libraries are not copied into your project/packages but can be used to build shared libraries (see LOCAL_STATIC_LIBRARIES and LOCAL_WHOLE_STATIC_LIBRARIES described below). Example usage: include $(BUILD_STATIC_LIBRARY) Note that this will generate a file named lib$(LOCAL_MODULE).a PREBUILT_SHARED_LIBRARY Points to a build script used to specify a prebuilt shared library. Unlike BUILD_SHARED_LIBRARY and BUILD_STATIC_LIBRARY, the value of LOCAL_SRC_FILES must be a single path to a prebuilt shared library (e.g. foo/libfoo.so), instead of a source file. You can reference the prebuilt library in another module using the LOCAL_PREBUILTS variable (see docs/PREBUILTS.html for more information).

    指向一个编译脚本,这个脚本是用来指定预编译动态库。与BUILD_SHARED_LIBRARY and BUILD_STATIC_LIBRARY不同的是,LOCAL_SRC_FILES必须是一个指向预编译动态库的路径
    ,而不是源代码。 PREBUILT_STATIC_LIBRARY This is the same as PREBUILT_SHARED_LIBRARY, but for a static library file instead. See docs/PREBUILTS.html for more. TARGET_ARCH Name of the target CPU architecture as it is specified by the full Android open-source build. This is 'arm' for any ARM-compatible build, independent of the CPU architecture revision.
    CPU架构的名字。如果是“arm”的话,那么编译出的库可以在任何arm兼容的设备上运行,不用去管CPU架构的修正。
    TARGET_PLATFORM Name of the target Android platform when this Android.mk is parsed. For example, 'android-3' correspond to Android 1.5 system images. For a complete list of platform names and corresponding Android system images, read docs/STABLE-APIS.html.
    TARGET_ARCH_ABI Name of the target CPU+ABI when this Android.mk is parsed. Two values are supported at the moment: armeabi For ARMv5TE armeabi-v7a NOTE: Up to Android NDK 1.6_r1, this variable was simply defined as 'arm'. However, the value has been redefined to better match what is used internally by the Android platform. For more details about architecture ABIs and corresponding compatibility issues, please read docs/CPU-ARCH-ABIS.html Other target ABIs will be introduced in future releases of the NDK and will have a different name. Note that all ARM-based ABIs will have 'TARGET_ARCH' defined to 'arm', but may have different 'TARGET_ARCH_ABI' TARGET_ABI The concatenation of target platform and ABI, it really is defined as $(TARGET_PLATFORM)-$(TARGET_ARCH_ABI) and is useful when you want to test against a specific target system image for a real device. By default, this will be 'android-3-armeabi' (Up to Android NDK 1.6_r1, this used to be 'android-3-arm' by default) NDK-provided function macros: - - - - - - - - - - - - - - - The following are GNU Make 'function' macros, and must be evaluated by using '$(call <function>)'. They return textual information. my-dir Returns the path of the last included Makefile, which typically is the current Android.mk's directory. This is useful to define LOCAL_PATH at the start of your Android.mk as with: LOCAL_PATH := $(call my-dir) IMPORTANT NOTE: Due to the way GNU Make works, this really returns the path of the *last* *included* *Makefile* during the parsing of build scripts. Do not call my-dir after including another file. For example, consider the following example: LOCAL_PATH := $(call my-dir) ... declare one module include $(LOCAL_PATH)/foo/Android.mk LOCAL_PATH := $(call my-dir) ... declare another module The problem here is that the second call to 'my-dir' will define LOCAL_PATH to $PATH/foo instead of $PATH, due to the include that was performed before that. For this reason, it's better to put additional includes after everything else in an Android.mk, as in: LOCAL_PATH := $(call my-dir) ... declare one module LOCAL_PATH := $(call my-dir) ... declare another module # extra includes at the end of the Android.mk include $(LOCAL_PATH)/foo/Android.mk If this is not convenient, save the value of the first my-dir call into another variable, for example: MY_LOCAL_PATH := $(call my-dir) LOCAL_PATH := $(MY_LOCAL_PATH) ... declare one module include $(LOCAL_PATH)/foo/Android.mk LOCAL_PATH := $(MY_LOCAL_PATH) ... declare another module all-subdir-makefiles Returns a list of Android.mk located in all sub-directories of the current 'my-dir' path. For example, consider the following hierarchy: sources/foo/Android.mk sources/foo/lib1/Android.mk sources/foo/lib2/Android.mk If sources/foo/Android.mk contains the single line: include $(call all-subdir-makefiles) Then it will include automatically sources/foo/lib1/Android.mk and sources/foo/lib2/Android.mk This function can be used to provide deep-nested source directory hierarchies to the build system. Note that by default, the NDK will only look for files in sources/*/Android.mk this-makefile Returns the path of the current Makefile (i.e. where the function is called). parent-makefile Returns the path of the parent Makefile in the inclusion tree, i.e. the path of the Makefile that included the current one. grand-parent-makefile Guess what... import-module A function that allows you to find and include the Android.mk of another module by name. A typical example is: $(call import-module,<name>) And this will look for the module tagged <name> in the list of directories referenced by your NDK_MODULE_PATH environment variable, and include its Android.mk automatically for you. Read docs/IMPORT-MODULE.html for more details. Module-description variables: - - - - - - - - - - - - - - - The following variables are used to describe your module to the build system. You should define some of them between an 'include $(CLEAR_VARS)' and an 'include $(BUILD_XXXXX)'. As written previously, $(CLEAR_VARS) is a script that will undefine/clear all of these variables, unless explicitly noted in their description. LOCAL_PATH This variable is used to give the path of the current file. You MUST define it at the start of your Android.mk, which can be done with: LOCAL_PATH := $(call my-dir) This variable is *not* cleared by $(CLEAR_VARS) so only one definition per Android.mk is needed (in case you define several modules in a single file). LOCAL_MODULE This is the name of your module. It must be unique among all module names, and shall not contain any space. You MUST define it before including any $(BUILD_XXXX) script. By default, the module name determines the name of generated files, e.g. lib<foo>.so for a shared library module named <foo>. However you should only refer to other modules with their 'normal' name (e.g. <foo>) in your NDK build files (either Android.mk or Application.mk) You can override this default with LOCAL_MODULE_FILENAME (see below) LOCAL_MODULE_FILENAME This variable is optional, and allows you to redefine the name of generated files. By default, module <foo> will always generate a static library named lib<foo>.a or a shared library named lib<foo>.so, which are standard Unix conventions. You can override this by defining LOCAL_MODULE_FILENAME, For example: LOCAL_MODULE := foo-version-1 LOCAL_MODULE_FILENAME := libfoo NOTE: You should not put a path or file extension in your LOCAL_MODULE_FILENAME, these will be handled automatically by the build system. LOCAL_SRC_FILES This is a list of source files that will be built for your module. Only list the files that will be passed to a compiler, since the build system automatically computes dependencies for you. Note that source files names are all relative to LOCAL_PATH and you can use path components, e.g.: LOCAL_SRC_FILES := foo.c toto/bar.c NOTE: Always use Unix-style forward slashes (/) in build files. Windows-style back-slashes will not be handled properly. LOCAL_CPP_EXTENSION This is an optional variable that can be defined to indicate the file extension(s) of C++ source files. They must begin with a dot. The default is '.cpp' but you can change it. For example: LOCAL_CPP_EXTENSION := .cxx Since NDK r7, you can list several extensions in this variable, as in: LOCAL_CPP_EXTENSION := .cxx .cpp .cc LOCAL_CPP_FEATURES This is an optional variable that can be defined to indicate that your code relies on specific C++ features. To indicate that your code uses RTTI (RunTime Type Information), use the following: LOCAL_CPP_FEATURES := rtti To indicate that your code uses C++ exceptions, use: LOCAL_CPP_FEATURES := exceptions You can also use both of them with (order is not important): LOCAL_CPP_FEATURES := rtti features The effect of this variable is to enable the right compiler/linker flags when building your modules from sources. For prebuilt binaries, this also helps declare which features the binary relies on to ensure the final link works correctly. It is recommended to use this variable instead of enabling -frtti and -fexceptions directly in your LOCAL_CPPFLAGS definition. LOCAL_C_INCLUDES An optional list of paths, relative to the NDK *root* directory, which will be appended to the include search path when compiling all sources (C, C++ and Assembly). For example: LOCAL_C_INCLUDES := sources/foo Or even: LOCAL_C_INCLUDES := $(LOCAL_PATH)/../foo These are placed before any corresponding inclusion flag in LOCAL_CFLAGS / LOCAL_CPPFLAGS The LOCAL_C_INCLUDES path are also used automatically when launching native debugging with ndk-gdb. LOCAL_CFLAGS An optional set of compiler flags that will be passed when building C *and* C++ source files. This can be useful to specify additional macro definitions or compile options. IMPORTANT: Try not to change the optimization/debugging level in your Android.mk, this can be handled automatically for you by specifying the appropriate information in your Application.mk, and will let the NDK generate useful data files used during debugging. NOTE: In android-ndk-1.5_r1, the corresponding flags only applied to C source files, not C++ ones. This has been corrected to match the full Android build system behaviour. (You can use LOCAL_CPPFLAGS to specify flags for C++ sources only now). It is possible to specify additional include paths with LOCAL_CFLAGS += -I<path>, however, it is better to use LOCAL_C_INCLUDES for this, since the paths will then also be used during native debugging with ndk-gdb. LOCAL_CXXFLAGS An alias for LOCAL_CPPFLAGS. Note that use of this flag is obsolete as it may disappear in future releases of the NDK. LOCAL_CPPFLAGS An optional set of compiler flags that will be passed when building C++ source files *only*. They will appear after the LOCAL_CFLAGS on the compiler's command-line. NOTE: In android-ndk-1.5_r1, the corresponding flags applied to both C and C++ sources. This has been corrected to match the full Android build system. (You can use LOCAL_CFLAGS to specify flags for both C and C++ sources now). LOCAL_STATIC_LIBRARIES The list of static libraries modules (built with BUILD_STATIC_LIBRARY) that should be linked to this module. This only makes sense in shared library modules. LOCAL_SHARED_LIBRARIES The list of shared libraries *modules* this module depends on at runtime. This is necessary at link time and to embed the corresponding information in the generated file. LOCAL_WHOLE_STATIC_LIBRARIES A variant of LOCAL_STATIC_LIBRARIES used to express that the corresponding library module should be used as "whole archives" to the linker. See the GNU linker's documentation for the --whole-archive flag. This is generally useful when there are circular dependencies between several static libraries. Note that when used to build a shared library, this will force all object files from your whole static libraries to be added to the final binary. This is not true when generating executables though. LOCAL_LDLIBS The list of additional linker flags to be used when building your module. This is useful to pass the name of specific system libraries with the "-l" prefix. For example, the following will tell the linker to generate a module that links to /system/lib/libz.so at load time: LOCAL_LDLIBS := -lz See docs/STABLE-APIS.html for the list of exposed system libraries you can linked against with this NDK release. LOCAL_LDFLAGS The list of other linker flags to be used when building your module. For example, the following will use linker ld.bfd on ARM/X86 GCC 4.6/4.7 where ld.gold is the default LOCAL_LDFLAGS += -fuse-ld=bfd LOCAL_ALLOW_UNDEFINED_SYMBOLS By default, any undefined reference encountered when trying to build a shared library will result in an "undefined symbol" error. This is a great help to catch bugs in your source code. However, if for some reason you need to disable this check, set this variable to 'true'. Note that the corresponding shared library may fail to load at runtime. LOCAL_ARM_MODE By default, ARM target binaries will be generated in 'thumb' mode, where each instruction are 16-bit wide. You can define this variable to 'arm' if you want to force the generation of the module's object files in 'arm' (32-bit instructions) mode. E.g.: LOCAL_ARM_MODE := arm Note that you can also instruct the build system to only build specific sources in ARM mode by appending an '.arm' suffix to its source file name. For example, with: LOCAL_SRC_FILES := foo.c bar.c.arm Tells the build system to always compile 'bar.c' in ARM mode, and to build foo.c according to the value of LOCAL_ARM_MODE. NOTE: Setting APP_OPTIM to 'debug' in your Application.mk will also force the generation of ARM binaries as well. This is due to bugs in the toolchain debugger that don't deal too well with thumb code. LOCAL_ARM_NEON Defining this variable to 'true' allows the use of ARM Advanced SIMD (a.k.a. NEON) GCC intrinsics in your C and C++ sources, as well as NEON instructions in Assembly files. You should only define it when targeting the 'armeabi-v7a' ABI that corresponds to the ARMv7 instruction set. Note that not all ARMv7 based CPUs support the NEON instruction set extensions and that you should perform runtime detection to be able to use this code at runtime safely. To learn more about this, please read the documentation at docs/CPU-ARM-NEON.html and docs/CPU-FEATURES.html. Alternatively, you can also specify that only specific source files may be compiled with NEON support by using the '.neon' suffix, as in: LOCAL_SRC_FILES = foo.c.neon bar.c zoo.c.arm.neon In this example, 'foo.c' will be compiled in thumb+neon mode, 'bar.c' will be compiled in 'thumb' mode, and 'zoo.c' will be compiled in 'arm+neon' mode. Note that the '.neon' suffix must appear after the '.arm' suffix if you use both (i.e. foo.c.arm.neon works, but not foo.c.neon.arm !) LOCAL_DISABLE_NO_EXECUTE Android NDK r4 added support for the "NX bit" security feature. It is enabled by default, but you can disable it if you *really* need to by setting this variable to 'true'. NOTE: This feature does not modify the ABI and is only enabled on kernels targeting ARMv6+ CPU devices. Machine code generated with this feature enabled will run unmodified on devices running earlier CPU architectures. For more information, see: http://en.wikipedia.org/wiki/NX_bit http://www.gentoo.org/proj/en/hardened/gnu-stack.xml LOCAL_DISABLE_RELRO By default, NDK compiled code is built with read-only relocations and GOT protection. This instructs the runtime linker to mark certain regions of memory as being read-only after relocation, making certain security exploits (such as GOT overwrites) harder to perform. It is enabled by default, but you can disable it if you *really* need to by setting this variable to 'true'. NOTE: These protections are only effective on newer Android devices ("Jelly Bean" and beyond). The code will still run on older versions (albeit without memory protections). For more information, see: http://isisblogs.poly.edu/2011/06/01/relro-relocation-read-only/ http://www.akkadia.org/drepper/nonselsec.pdf (section 6) LOCAL_EXPORT_CFLAGS Define this variable to record a set of C/C++ compiler flags that will be added to the LOCAL_CFLAGS definition of any other module that uses this one with LOCAL_STATIC_LIBRARIES or LOCAL_SHARED_LIBRARIES. For example, consider the module 'foo' with the following definition: include $(CLEAR_VARS) LOCAL_MODULE := foo LOCAL_SRC_FILES := foo/foo.c LOCAL_EXPORT_CFLAGS := -DFOO=1 include $(BUILD_STATIC_LIBRARY) And another module, named 'bar' that depends on it as: include $(CLEAR_VARS) LOCAL_MODULE := bar LOCAL_SRC_FILES := bar.c LOCAL_CFLAGS := -DBAR=2 LOCAL_STATIC_LIBRARIES := foo include $(BUILD_SHARED_LIBRARY) Then, the flags '-DFOO=1 -DBAR=2' will be passed to the compiler when building bar.c Exported flags are prepended to your module's LOCAL_CFLAGS so you can easily override them. They are also transitive: if 'zoo' depends on 'bar' which depends on 'foo', then 'zoo' will also inherit all flags exported by 'foo'. Finally, exported flags are *not* used when building the module that exports them. In the above example, -DFOO=1 would not be passed to the compiler when building foo/foo.c. LOCAL_EXPORT_CPPFLAGS Same as LOCAL_EXPORT_CFLAGS, but for C++ flags only. LOCAL_EXPORT_C_INCLUDES Same as LOCAL_EXPORT_CFLAGS, but for C include paths. This can be useful if 'bar.c' wants to include headers that are provided by module 'foo'. LOCAL_EXPORT_LDLIBS Same as LOCAL_EXPORT_CFLAGS, but for linker flags. Note that the imported linker flags will be appended to your module's LOCAL_LDLIBS though, due to the way Unix linkers work. This is typically useful when module 'foo' is a static library and has code that depends on a system library. LOCAL_EXPORT_LDLIBS can then be used to export the dependency. For example: include $(CLEAR_VARS) LOCAL_MODULE := foo LOCAL_SRC_FILES := foo/foo.c LOCAL_EXPORT_LDLIBS := -llog include $(BUILD_STATIC_LIBRARY) include $(CLEAR_VARS) LOCAL_MODULE := bar LOCAL_SRC_FILES := bar.c LOCAL_STATIC_LIBRARIES := foo include $(BUILD_SHARED_LIBRARY) There, libbar.so will be built with a -llog at the end of the linker command to indicate that it depends on the system logging library, because it depends on 'foo'. LOCAL_SHORT_COMMANDS Set this variable to 'true' when your module has a very high number of sources and/or dependent static or shared libraries. This forces the build system to use an intermediate list file, and use it with the library archiver or static linker with the @$(listfile) syntax. This can be useful on Windows, where the command-line only accepts a maximum of 8191 characters, which can be too small for complex projects. This also impacts the compilation of individual source files, placing nearly all compiler flags inside list files too. Note that any other value than 'true' will revert to the default behaviour. You can also define APP_SHORT_COMMANDS in your Application.mk to force this behaviour for all modules in your project. NOTE: We do not recommend enabling this feature by default, since it makes the build slower. LOCAL_FILTER_ASM Define this variable to a shell command that will be used to filter the assembly files from, or generated from, your LOCAL_SRC_FILES. When it is defined, the following happens: - Any C or C++ source file is generated into a temporary assembly file (instead of being compiled into an object file). - Any temporary assembly file, and any assembly file listed in LOCAL_SRC_FILES is sent through the LOCAL_FILTER_ASM command to generate _another_ temporary assembly file. - These filtered assembly files are compiled into object file. In other words, If you have: LOCAL_SRC_FILES := foo.c bar.S LOCAL_FILTER_ASM := myasmfilter foo.c --1--> $OBJS_DIR/foo.S.original --2--> $OBJS_DIR/foo.S --3--> $OBJS_DIR/foo.o bar.S --2--> $OBJS_DIR/bar.S --3--> $OBJS_DIR/bar.o Were "1" corresponds to the compiler, "2" to the filter, and "3" to the assembler. The filter must be a standalone shell command that takes the name of the input file as its first argument, and the name of the output file as the second one, as in: myasmfilter $OBJS_DIR/foo.S.original $OBJS_DIR/foo.S myasmfilter bar.S $OBJS_DIR/bar.S
  • 相关阅读:
    接口隔离原则(Interface Segregation Principle)ISP
    依赖倒置(Dependence Inversion Principle)DIP
    里氏替换原则(Liskov Substitution Principle) LSP
    单一指责原则(Single Responsibility Principle) SRP
    《面向对象葵花宝典》阅读笔记
    智能手表ticwatch穿戴体验
    我所理解的软件工程
    RBAC基于角色的权限访问控制
    程序员健康指南阅读笔记
    我晕倒在厕所了
  • 原文地址:https://www.cnblogs.com/itblog/p/7236605.html
Copyright © 2020-2023  润新知