坐标与矩阵变换时矩阵论的基础,也是机器人,机器视觉技术的基础。这本加州理工的教材沿用了机器人技术中的表达方式。这里记录一下
ps:MIT Ocw课程《线性代数》真的非常非常有用,原本一知半解的问题现在都明白了。
空间中的一个向量
空间中的一个向量就是空间中的一个向量。
就像来自遥远宇宙的一束光,不知道它从哪里来,也不知道它到哪里去,从我们头上掠过,波澜不惊。
好了,这句看起来很装逼的话其实可以用向量空间的语言来解释。
- 不知道它在它老家的 坐标系 中是如何表达的,但是那个坐标系肯定存在,而且它的目的地在那个坐标系中有个坐标,从起点到终点的连线就是这道光。或者说这个向量
- 也不知道它到哪里去。它的终点也一定有个 坐标系 记录了这道光到达的位置,和它飞来的方向。也是一个向量。
- 作为一个地球人,我们看见这道光从头上飞了过去,我们看见了它的指向,从一个点,指向另一个点。光还是这道光。
这表示,空间中的一个向量有很多表达方式,但是向量还是这个向量,本质没变。用向量空间符号表示为:
向量坐标的关系
从向量表示,可以看出AP 和 BP 存在一定关系,这种关系可以表示为:
记作
R表示坐标系之间的旋转矩阵,P表示坐标。左上标均表示坐标系。给出坐标系A,B之间旋转关系,就可以由公式求出R。从而得到A、B中点的坐标变换关系。
旋转矩阵的性质
-
旋转矩阵式单位阵,这很好理解,旋转变换时刚体变换,其雅可比行列式必然为1。
-
旋转矩阵的逆矩阵R−1 是它的逆矩阵RT 这也很好理解,从计算方法里可以看出。
坐标原点不重合的情况
上述表达只适用于坐标系分别绕各个轴旋转后的结果,不适用于原点不重合的情况,如果坐标原点不重合,则
其中BOA 表示的是点OA在B坐标系中的坐标。
这个操作相当于将A坐标系中的点先旋转然后再平移,平移的方向是A坐标系的原点在B坐标系中的坐标。也就是B坐标系原点指向A坐标系原点的向量。A坐标系中的点加上向量B-A就变成了B坐标系中的点。
刚体变换的齐次坐标表示
如果写成齐次坐标的形式有。
坐标中点的变换
坐标中点的变换是指,如果坐标中有两个点,那么这两个点之间应该存在某种变换关系。比如在F坐标系中有两点P 和 P′,首先将问题退化成旋转变化,这样比较简单。并且具有推广性。
那么可以写作
上式描述的是,如果在A坐标系中存在另外一个坐标系B,是的P’的坐标值和P在A中的坐标值相等。
版权声明:本文为博主原创文章,未经博主允许不得转载。