一、电源
1、考虑系统对电源的需求,例如系统需要几种电源,如24V、12V、5V或者3.3V等,估计各需要多少功率或最大电流(mA)。在计算电源总功率时要考虑一定的余量,可按公式“电源总功率=2×器件总功率”来计算。
2、考虑芯片与器件对电源波动性的需求。一般允许电源波动幅度在 ±5% 以内。对于A/D转换芯片的参考电压一般要求 ±1% 以内。
3、考虑工作电源是使用电源模块还是使用外接电源。
二、普通I/O口
1、上拉、下拉电阻:考虑用内部或者外部上/下拉电阻,内部上/下拉阻值一般在 700Ω 左右,低功耗模式不宜使用。外部上/下拉电阻根据需要可选 10KΩ~1MΩ 之间。
2、开关量输入:一定要保证高低电压分明。理想情况下高电*就是电源电压,低电*就是地的电*。如果外部电路无法正确区分高低电*,但高低仍有较大压差,可考虑用 A/D 采集的方式设计处理。对分压方式中的采样点,要考虑分压电阻的选择,使该点通过采样端口的电流不小于采样最小输入电流,否则无法进行采样。
3、开关量输出:基本原则是保证输出高电*接*电源电压,低电*接*地电*。I/O 口的吸纳电流一般大于放出电流。对小功率元器件控制最好是采用低电*控制的方式。一般情况下,若负载要求小于10mA,则可用芯片引脚直接控制;电流在 10~100mA 时可用三极管控制,在 100mA~1A 时用 IC 控制;更大的电流则适合用继电器控制,同时建议使用光电隔离芯片。
三、A/D电路与D/A电路
1、A/D电路:要清楚前端采样基本原理,对电阻型、电流型和电压型传感器采用不同的采集电路。如果采集的信号微弱,还要考虑如何进行信号放大。
2、D/A电路:考虑 MCU 的引脚通过何种输出电路控制实际对象。
四、控制电路
对外控制电路要注意设计的冗余与反测,要有合适的信号隔离措施等。在评估设计的布板时,一定要在构件的输入输出端引出检测孔,以方便排查错误时测量。
五、考虑低功耗
低功耗设计并不仅仅是为了省电,更多的好处在于降低了电源模块及散热系统的成本。由于电流的减小也减少了电磁辐射和热噪声的干扰。随着设备温度的降低,器件寿命则相应延长,要做到低功耗一般需要注意以下几点:
1、并不是所有的总线信号都要上拉。上下拉电阻也有功耗问题需要考虑。上下拉电阻拉一个单纯的输入信号,电流也就几十微安以下。但拉一个被驱动了的信号,其电流将达毫安级。所以需要考虑上下拉电阻对系统总功耗的影响。
2、不用的I/O口不要悬空,如果悬空的话,受外界的一点点干扰就可能成为反复振荡的输入信号,而MOS器件的功耗基本取决于门电路的翻转次数。
3、对一些外围小芯片的功耗也需要考虑。对于内部不太复杂的芯片功耗是很难确定的,它主要由引脚上的电流确定。例如有的芯片引脚在没有负载时,耗电大概不到1毫安,但负载增大以后,可能功耗很大。