• Kth Smallest Element in a BST 解答


    Question

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.

    Note: 
    You may assume k is always valid, 1 ≤ k ≤ BST's total elements.

    Follow up

    What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?

    Hint:

    1. Try to utilize the property of a BST.
    2. What if you could modify the BST node's structure?
    3. The optimal runtime complexity is O(height of BST).

    Solution 1 -- Inorder Traversal

    Again, we use the feature of inorder traversal of BST. But this solution is not best for follow up. Time complexity O(n), n is the number of nodes.

     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode(int x) { val = x; }
     8  * }
     9  */
    10 public class Solution {
    11     public int kthSmallest(TreeNode root, int k) {
    12         TreeNode current = root;
    13         Stack<TreeNode> stack = new Stack<TreeNode>();
    14         while (current != null || !stack.empty()) {
    15             if (current != null) {
    16                 stack.push(current);
    17                 current = current.left;
    18             } else {
    19                 TreeNode tmp = stack.pop();
    20                 k--;
    21                 if (k == 0) {
    22                     return tmp.val;
    23                 }
    24                 current = tmp.right;
    25             }
    26         }
    27         return -1;
    28     }
    29 }

    Solution 2 -- Augmented Tree

    The idea is to maintain rank of each node. We can keep track of elements in a subtree of any node while building the tree. Since we need K-th smallest element, we can maintain number of elements of left subtree in every node.

    Assume that the root is having N nodes in its left subtree. If K = N + 1, root is K-th node. If K < N, we will continue our search (recursion) for the Kth smallest element in the left subtree of root. If K > N + 1, we continue our search in the right subtree for the (K – N – 1)-th smallest element. Note that we need the count of elements in left subtree only.

    Time complexity: O(h) where h is height of tree.

    (referrence: GeeksforGeeks)

    Here, we construct tree in a way that is taught during Algorithm class.

    "size" is an attribute which indicates number of nodes in sub-tree rooted in that node.

    Time complexity: constructing tree O(n), find Kth smallest number O(h).

    start:
    if K = root.leftElement + 1
       root node is the K th node.
       goto stop
    else if K > root.leftElements
       K = K - (root.leftElements + 1)
       root = root.right
       goto start
    else
       root = root.left
       goto srart
    
    stop
     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode(int x) { val = x; }
     8  * }
     9  */
    10 class ImprovedTreeNode {
    11     int val;
    12     int size; // number of nodes in the subtree that rooted in this node
    13     ImprovedTreeNode left;
    14     ImprovedTreeNode right;
    15     public ImprovedTreeNode(int value) {val = value;}
    16 }
    17 
    18 public class Solution {
    19     
    20     // Construct ImprovedTree recursively
    21     public ImprovedTreeNode createAugmentedBST(TreeNode root) {
    22         if (root == null)
    23             return null;
    24         ImprovedTreeNode newHead = new ImprovedTreeNode(root.val);
    25         ImprovedTreeNode left = createAugmentedBST(root.left);
    26         ImprovedTreeNode right = createAugmentedBST(root.right);
    27         newHead.size = 1;
    28         if (left != null)
    29             newHead.size += left.size;
    30         if (right != null)
    31             newHead.size += right.size;
    32         newHead.left = left;
    33         newHead.right = right;
    34         return newHead;
    35     }
    36     
    37     public int findKthSmallest(ImprovedTreeNode root, int k) {
    38         if (root == null)
    39             return -1;
    40         ImprovedTreeNode tmp = root;
    41         int leftSize = 0;
    42         if (tmp.left != null)
    43             leftSize = tmp.left.size;
    44         if (leftSize + 1 == k)
    45             return root.val;
    46         else if (leftSize + 1 > k)
    47             return findKthSmallest(root.left, k);
    48         else
    49             return findKthSmallest(root.right, k - leftSize - 1);
    50     }
    51     
    52     public int kthSmallest(TreeNode root, int k) {
    53         if (root == null)
    54             return -1;
    55         ImprovedTreeNode newRoot = createAugmentedBST(root);
    56         return findKthSmallest(newRoot, k);
    57     }
    58 }
  • 相关阅读:
    树上差分
    Java学习笔记(二)事件监听器
    Java学习笔记(三)Java2D组件
    1066. Root of AVL Tree (25)
    有一种蓝,是神往,是心醉,是心伤
    软考论文的六大应对策略V1.0
    iOS 图形编程总结
    【悼鲁迅】诗一首
    【秋游】诗一首
    【游普罗旺斯薰衣草庄园】诗一首
  • 原文地址:https://www.cnblogs.com/ireneyanglan/p/4865672.html
Copyright © 2020-2023  润新知