• LRU Cache 解答


    Question

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

    get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
    set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

    Solution

    My first thought is to use a linked list and a hashmap. But remove and add element for linked list is O(n) per step.

    So, the final idea is to implement a bi-directional linked list.

    details

    For this question, I submitted over 10 times and finally got accepted.

    There are many details we need to check.

    1. When deleting a node, we should modify both prev and next attributes of its neighbors.

    2. Every time when we add a new node, we should check whether it is the first node.

    3. When input capacity is 1, we should deal with it separately.

      1 // Construct double list node
      2 class Node {
      3     public Node prev;
      4     public Node next;
      5     private int val;
      6     private int key;
      7     public Node(int key, int val) {
      8         this.key = key;
      9         this.val = val;
     10     }
     11     public void setValue(int val) {
     12         this.val = val;
     13     }
     14     public int getKey() {
     15         return key;
     16     }
     17     public int getValue() {
     18         return val;
     19     }
     20 }
     21 
     22 
     23 public class LRUCache {
     24     private int capacity;
     25     private Map<Integer, Node> map;
     26     private Node head;
     27     private Node tail;
     28     
     29     public LRUCache(int capacity) {
     30         this.capacity = capacity;
     31         map = new HashMap<Integer, Node>();
     32     }
     33     
     34     private void moveToHead(Node target) {
     35         // Check whether target is already at head
     36         if (target.prev == null)
     37             return;
     38         // Check whether target is at tail
     39         if (target == tail)
     40             tail = target.prev;
     41         Node prev = target.prev;
     42         Node next = target.next;
     43         if (prev != null)
     44         prev.next = next;
     45         if (next != null)
     46             next.prev = prev;
     47         
     48         Node oldHead = head;
     49         target.prev = null;
     50         target.next = oldHead;
     51         oldHead.prev = target;
     52         head = target;
     53     }
     54     
     55     public int get(int key) {
     56         if (!map.containsKey(key))
     57             return -1;
     58         Node current = map.get(key);
     59         // Move found node to head
     60         moveToHead(current);
     61         return current.getValue();
     62     }
     63     
     64     public void set(int key, int value) {
     65         if (map.containsKey(key)) {
     66             Node current = map.get(key);
     67             current.setValue(value);
     68             // Move found node to head
     69             moveToHead(current);
     70             
     71         } else {
     72             Node current = new Node(key, value);
     73             // Add new node to map
     74             map.put(key, current);
     75             
     76             // Check whether map size is bigger than capacity
     77             if (map.size() > capacity) {
     78                 // Move farest used element out
     79                 Node last = tail;
     80                 map.remove(last.getKey());
     81                 // Remove from list
     82                 if (map.size() == 1) {
     83                     head = current;
     84                     tail = current;
     85                 } else {
     86                     Node oldHead = head;
     87                     current.next = oldHead;
     88                     oldHead.prev = current;
     89                     head = current;
     90                     tail = tail.prev;
     91                     tail.next = null;
     92                 }
     93                 
     94             } else {
     95                 // Add new node to list
     96                 if (map.size() == 1) {
     97                     head = current;
     98                     tail = current;
     99                 } else {
    100                     Node oldHead = head;
    101                     current.next = oldHead;
    102                     oldHead.prev = current;
    103                     head = current;
    104                 }
    105             }
    106         }
    107     }
    108 }
  • 相关阅读:
    删除datatable的重复行
    导出大Excel
    winform调用plugin
    System.AppDomain.CurrentDomain.BaseDirectory总是取得根目录
    能不能多想一点呢?
    执行语句使用exec (sql)
    open the folder
    取得一个表的所有字段
    快讯:麦考林第四季度净利110万美元同比减62%
    麦考林第四季度净利110万美元同比减62%(图解)
  • 原文地址:https://www.cnblogs.com/ireneyanglan/p/4863464.html
Copyright © 2020-2023  润新知