• Median of Two Sorted Arrays 解答


    Question

    There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

    Solution 1 -- Traverse Array

    Use merge procedure of merge sort here. Keep track of count while comparing elements of two arrays. Note to consider odd / even situation.

    Time complexity O(n), space cost O(1).

     1 public class Solution {
     2     public double findMedianSortedArrays(int[] nums1, int[] nums2) {
     3         int length1 = nums1.length, length2 = nums2.length, total = length1 + length2;
     4         int index1 = total / 2, index2;
     5         // Consider two situations: (n + m) is odd, (n + m) is even
     6         if (total % 2 == 0)
     7             index2 = total / 2 - 1;
     8         else
     9             index2 = total / 2;
    10         // Traverse once to get median
    11         int p1 = 0, p2 = 0, p = -1, tmp, median1 = 0, median2 = 0;
    12         while (p1 < length1 && p2 < length2) {
    13             if (nums1[p1] < nums2[p2]) {
    14                 tmp = nums1[p1];
    15                 p1++;
    16             } else {
    17                 tmp = nums2[p2];
    18                 p2++;
    19             }
    20             p++;
    21             if (p == index1)
    22                 median1 = tmp;
    23             if (p == index2)
    24                 median2 = tmp;
    25         }
    26         if (p < index1 || p < index2) {
    27             while (p1 < length1) {
    28                 tmp = nums1[p1];
    29                 p1++;
    30                 p++;
    31                 if (p == index1)
    32                     median1 = tmp;
    33                 if (p == index2)
    34                     median2 = tmp;
    35             }
    36             while (p2 < length2) {
    37                 tmp = nums2[p2];
    38                 p2++;
    39                 p++;
    40                 if (p == index1)
    41                     median1 = tmp;
    42                 if (p == index2)
    43                     median2 = tmp;
    44             }
    45         }
    46         return ((double)median1 + (double)median2) / 2;
    47     }
    48 }

    Solution 2 -- Binary Search

    General way to find Kth element in two sorted arrays. Time complexity O(log(n + m)).

     1 public class Solution {
     2     public double findMedianSortedArrays(int[] nums1, int[] nums2) {
     3         int m = nums1.length, n = nums2.length;
     4         if ((m + n) %2 == 1)
     5             return findKthElement(nums1, nums2, (m + n) / 2, 0, m - 1, 0, n - 1);
     6         else
     7             return (findKthElement(nums1, nums2, (m + n) / 2, 0, m - 1, 0, n - 1) * 0.5 + 
     8                     findKthElement(nums1, nums2, (m + n) / 2 - 1, 0, m - 1, 0, n - 1) * 0.5);
     9     }
    10     
    11     private double findKthElement(int[] A, int[] B, int k, int startA, int endA, int startB, int endB) {
    12         int l1 = endA - startA + 1;
    13         int l2 = endB - startB + 1;
    14         if (l1 == 0)
    15             return B[k + startB];
    16         if (l2 == 0)
    17             return A[k + startA];
    18         if (k == 0)
    19             return A[startA] > B[startB] ? B[startB] : A[startA];
    20         int midA = k * l1 / (l1 + l2);
    21         // Note here
    22         int midB = k - midA - 1;
    23         midA = midA + startA;
    24         midB = midB + startB;
    25         if (A[midA] < B[midB]) {
    26             k = k - (midA - startA + 1);
    27             endB = midB;
    28             startA = midA + 1;
    29             return findKthElement(A, B, k, startA, endA, startB, endB);
    30         } else if (A[midA] > B[midB]) {
    31             k = k - (midB - startB + 1);
    32             endA = midA;
    33             startB = midB + 1;
    34             return findKthElement(A, B, k, startA, endA, startB, endB);
    35         } else {
    36             return A[midA];
    37         }
    38     }
    39 }
  • 相关阅读:
    04 UUID
    MD5加密算法(信息摘要算法)、Base64算法
    03 MD5加密、Base64处理
    MVC分层思想、SSM编程架构
    1网络编程基本概念
    Tomcat闪退的解决办法
    win10下的jdk1.8安装
    枚举练习
    1000元买物品分配
    win10解决vc++6.0不兼容问题方法
  • 原文地址:https://www.cnblogs.com/ireneyanglan/p/4827831.html
Copyright © 2020-2023  润新知