• Memcached的分布式算法Consistent Hashing


    memcached的分布式算法-Consistent Hashing

    前言:

    我们知道以往资料要放到 M 台服务器上,最简单的方法就是取余数 (hash_value % M) 然后放到对应的服务器上,那就是当添加或移除服务器时,缓存重组的代价相当巨大。添加服务器后,余数就会产生巨变,这样就无法获取与保存时相同的服务器, 从而影响缓存的命中率。

    下面这篇文章写的非常好,结合memcached的 特点利用Consistent hasning 算法,可以打造一个非常完备的分布式缓存服务器。

    我是Mixi的长野。 本次不再介绍memcached的内部结构, 开始介绍memcached的分布式。

     

    1 memcached的分布式

            Memcached虽然称为“分布式”缓存服务器,但服务器端并没有“分布式”功能。 服务器端仅包括 第2次、 第3次前坂介绍的内存存储功能,其实现非常简单。 至于memcached的分布式,则是完全由客户端程序库实现的。 这种分布式是memcached的最大特点。

    1.1 memcached的分布式是什么意思?

    这里多次使用了“分布式”这个词,但并未做详细解释。 现在开始简单地介绍一下其原理,各个客户端的实现基本相同。

    下面假设memcached服务器有node1~node3三台,应用程序要保存键名为“tokyo”“kanagawa”“chiba”“saitama”“gunma” 的数据。

    图1分布式简介:准备

                  

    首先向memcached中添加“tokyo”。将“tokyo”传给客户端程序库后, 客户端实现的算法就会根据“键”来决定保存数据的memcached服务器。 服务器选定后,即命令它保存“tokyo”及其值。

    图2分布式简介:添加时

                             

    同样,“kanagawa”“chiba”“saitama”“gunma”都是先选择服务器再保存。

    接下来获取保存的数据。获取时也要将要获取的键“tokyo”传递给函数库。 函数库通过与数据保存时相同的算法,根据“键”选择服务器。 使用的算法相同,就能选中与保存时相同的服务器,然后发送get命令。只要数据没有因为某些原因被删除,就能获得保存的值。

    图3分布式简介:获取时

                                

    这样,将不同的键保存到不同的服务器上,就实现了memcached的分布式。 memcached服务器增多后,键就会分散,即使一台memcached服务器发生故障 无法连接,也不会影响其他的缓存,系统依然能继续运行。

    接下来介绍第1次 中提到的Perl客户端函数库Cache::Memcached实现的分布式方法。

    2 Cache::Memcached的分布式方法

    Perl的memcached客户端函数库Cache::Memcached是 memcached的作者Brad Fitzpatrick的作品,可以说是原装的函数库了。

    ·        Cache::Memcached- search.cpan.org

    该函数库实现了分布式功能,是memcached标准的分布式方法。

    2.1 根据余数计算分散

    Cache::Memcached的分布式方法简单来说,就是“根据服务器台数的余数进行分散”。 求得键的整数哈希值,再除以服务器台数,根据其余数来选择服务器。

    下面将Cache::Memcached简化成以下的Perl脚本来进行说明。

    use strict;
    use warnings;
    use String::CRC32;
    my @nodes = (’node1′,’node2′,’node3′);
    my @keys = (’tokyo’, ‘kanagawa’, ‘chiba’, ’saitama’, ‘gunma’);
    foreach my $key (@keys) {
    my $crc = crc32($key); # CRC値
    my $mod = $crc % ( $#nodes + 1 );
    my $server = $nodes[ $mod ]; # 根据余数选择服务器
    printf “%s => %s\n”, $key, $server;
    }

    Cache::Memcached在求哈希值时使用了CRC。

    ·        String::CRC32- search.cpan.org

    首先求得字符串的CRC值,根据该值除以服务器节点数目得到的余数决定服务器。 上面的代码执行后输入以下结果:

    tokyo       => node2
    kanagawa => node3
    chiba       => node2
    saitama   =>node1
    gunma     =>node1

    根据该结果,“tokyo”分散到node2,“kanagawa”分散到node3等。 多说一句,当选择的服务器无法连接时,Cache::Memcached会将连接次数添加到键之后,再次计算哈希值并尝试连接。这个动作称为rehash。 不希望rehash时可以在生成Cache::Memcached对象时指定“rehash => 0”选项。

    2.2 根据余数计算分散的缺点

    余数计算的方法简单,数据的分散性也相当优秀,但也有其缺点。那就是当添加或移除服务器时,缓存重组的代价相当巨大。 添加服务器后,余数就会产生巨变,这样就无法获取与保存时相同的服务器, 从而影响缓存的命中率。用Perl写段代码来验证其代价。

    use strict;
    use warnings;
    use String::CRC32;
    my @nodes = @ARGV;
    my @keys = (’a’..’z');
    my %nodes;
    foreach my $key ( @keys ) {
    my $hash = crc32($key);
    my $mod = $hash % ( $#nodes + 1 );
    my $server = $nodes[ $mod ];
    push @{ $nodes{ $server } }, $key;
    }
    foreach my $node ( sort keys %nodes ) {
    printf “%s: %s\n”, $node, join “,”, @{ $nodes{$node} };
    }

    这段Perl脚本演示了将“a”到“z”的键保存到memcached并访问的情况。 将其保存为mod.pl并执行。

    首先,当服务器只有三台时:

    $ mod.pl node1 node2 nod3
    node1: a,c,d,e,h,j,n,u,w,x
    node2: g,i,k,l,p,r,s,y
    node3: b,f,m,o,q,t,v,z

    结果如上,node1保存a、c、d、e……,node2保存g、i、k……, 每台服务器都保存了8个到10个数据。

    接下来增加一台memcached服务器。

    $ mod.pl node1 node2 node3 node4
    node1: d,f,m,o,t,v
    node2: b,i,k,p,r,y
    node3: e,g,l,n,u,w
    node4: a,c,h,j,q,s,x,z

    添加了node4。可见,只有d、i、k、p、r、y命中了。像这样,添加节点后 键分散到的服务器会发生巨大变化。26个键中只有六个在访问原来的服务器, 其他的全都移到了其他服务器。命中率降低到23%。在Web应用程序中使用memcached时, 在添加memcached服务器的瞬间缓存效率会大幅度下降,负载会集中到数据库服务器上, 有可能会发生无法提供正常服务的情况。

    mixi的Web应用程序运用中也有这个问题,导致无法添加memcached服务器。 但由于使用了新的分布式方法,现在可以轻而易举地添加memcached服务器了。这种分布式方法称为 Consistent Hashing。

    3 Consistent Hashing

    关于Consistent Hashing的思想,mixi株式会社的开发blog等许多地方都介绍过, 这里只简单地说明一下。

    ·        mixiEngineers’ Blog - スマートな分散で快適キャッシュライフ

    ·        ConsistentHashing - コンシステント ハッシュ法

    3. 1 Consistent Hashing的简单说明

    Consistent Hashing如下所示:

           1)  首先求出memcached服务器(节点)的哈希值,并将其配置到0~232的圆(continuum)上。

           2)  然后用同样的方法求出存储数据的键的哈希值,并映射到圆上。 

           3)  然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器上。如果超过232仍然找不到服务器,就会保存到第一台memcached服务器上。


    图4Consistent Hashing:基本原理

                

           从上图的状态中添加一台memcached服务器。余数分布式算法由于保存键的服务器会发生巨大变化 而影响缓存的命中率,但Consistent Hashing中,只有在continuum上增加服务器的地点逆时针方向的第一台服务器上的键会受到影响。

           图5Consistent Hashing:添加服务器

               

           因此,Consistent Hashing最大限度地抑制了键的重新分布。 而且,有的ConsistentHashing的实现方法还采用了虚拟节点的思想。 使用一般的hash函数的话,服务器的映射地点的分布非常不均匀。因此,使用虚拟节点的思想,为每个物理节点(服务器) 在continuum上分配100~200个点。这样就能抑制分布不均匀, 最大限度地减小服务器增减时的缓存重新分布。

    通过下文中介绍的使用Consistent Hashing算法的memcached客户端函数库进行测试的结果是,由服务器台数(n)和增加的服务器台数(m)计算增加服务器后的命中率计算公式如下:

    (1 - n/(n+m)) * 100

    3. 2支持Consistent Hashing的函数库

           本连载中多次介绍的Cache::Memcached虽然不支持Consistent Hashing,但已有几个客户端函数库支持了这种新的分布式算法。 第一个支持Consistent Hashing和虚拟节点的memcached客户端函数库是 名为libketama的PHP库,由last.fm开发。

    ·        libketama - a consistent hashing algo for memcache clients –RJ ブログ - Users atLast.fm

    至于Perl客户端,连载的第1次 中介绍过的Cache::Memcached::Fast和Cache::Memcached::libmemcached支持 ConsistentHashing。

    ·        Cache::Memcached::Fast - search.cpan.org

    ·        Cache::Memcached::libmemcached - search.cpan.org

    两者的接口都与Cache::Memcached几乎相同,如果正在使用Cache::Memcached,那么就可以方便地替换过来。Cache::Memcached::Fast重新实现了libketama, 使用Consistent Hashing创建对象时可以指定ketama_points选项。

    my $memcached = Cache::Memcached::Fast->new({

        servers =>["192.168.0.1:11211","192.168.0.2:11211"],

        ketama_points=> 150

    });

    另外,Cache::Memcached::libmemcached 是一个使用了BrainAker开发的C函数库libmemcached的Perl模块。 libmemcached本身支持几种分布式算法,也支持Consistent Hashing, 其Perl绑定也支持Consistent Hashing。

    ·        TangentSoftware: libmemcached

    总结

            本次介绍了memcached的分布式算法,主要有memcached的分布式是由客户端函数库实现,以及高效率地分散数据的Consistent Hashing算法。下次将介绍mixi在memcached应用方面的一些经验, 和相关的兼容应用程序。

     

    Meet so Meet. C plusplus I-PLUS....
  • 相关阅读:
    async 异步协程进阶
    linux 磁盘100% 清理
    时间戳,日期,string互转
    ioutils
    logging basic
    【BZOJ5323】【JXOI2018】—游戏(组合数学+线性筛)
    【BZOJ5323】【JXOI2018】—游戏(组合数学+线性筛)
    【CodeChef】—Sum of Cubes(斯特林数+容斥+三元环计数)
    【CodeChef】—Sum of Cubes(斯特林数+容斥+三元环计数)
    【TopCoder SRM 686】—CyclesNumber(斯特林数)
  • 原文地址:https://www.cnblogs.com/iplus/p/4490283.html
Copyright © 2020-2023  润新知