• opencv kmeans 图像分割


    利用kmeans算法,将彩色图像的像素点作为样本,rgb值作为样本的属性,
    对图像所有的像素点进行分类,从而实现对图像中目标的分割。

    c++代码(openCV 2.4.11)

    Scalar colorTab[] = {
        Scalar(0, 0, 0),
        Scalar(255, 255, 255),
    };
    void color_cluster(const Mat& origin_img_rgb) {
        //  1、将图像按像素点转化为样本矩阵samples
        Mat samples = Mat(origin_img_rgb.size().width*origin_img_rgb.size().height, 1, CV_32FC3);
        int k = 0;
        for (int i = 0; i < origin_img_rgb.rows; i++) {
            for (int j = 0; j < origin_img_rgb.cols; j++) {
                samples.at<cv::Vec3f>(k, 0)[0] = origin_img_rgb.at<cv::Vec3b>(i, j)[0];
                samples.at<cv::Vec3f>(k, 0)[1] = origin_img_rgb.at<cv::Vec3b>(i, j)[1];
                samples.at<cv::Vec3f>(k, 0)[2] = origin_img_rgb.at<cv::Vec3b>(i, j)[2];
                ++k;
            }
        }
    
        //  2、聚类
        Mat labels;
        Mat centers;
        int nCuster = 2;  //聚类类别数
        
        // samples      输入样本浮点矩阵
        // nCuster      给定聚类类别数量
        // labels       每个样本对应的类别标识
        // TermCriteria 指定聚类的最大迭代次数或精度
        kmeans(samples, nCuster, labels, TermCriteria(CV_TERMCRIT_ITER, 10, 1.0), 3, KMEANS_RANDOM_CENTERS, centers);
        
        //  3、将聚类结果转换为图像显示出来
        k = 0;
        Mat img(origin_img_rgb.size(), CV_8UC3);
        for (int i = 0; i < origin_img_rgb.rows; i++) {
            for (int j = 0; j < origin_img_rgb.cols; j++) {
                int clusterIdx = labels.at<int>(k++, 0);
                circle(img, {j,i}, 2, colorTab[clusterIdx], CV_FILLED, CV_AA);
            }
        }
        imshow("originimg", origin_img_rgb);
        imshow("clusters", img);
        char key = (char)waitKey();
        if (key == 27 || key == 'q' || key == 'Q') {return ;}
    }
    
    

    效果:

  • 相关阅读:
    Oracle 添加主键和索引
    Oracle中查询主键、外键、sequence、表基本信息等
    Spring工作原理
    Ehcache 缓存使用
    socket编程-java
    oracle触发器详解
    单例模式的几种写法
    [LeetCode] 412. Fizz Buzz 嘶嘶嗡嗡
    LeetCode Top Interview Questions
    [LeetCode] 131. Palindrome Partitioning 回文分割
  • 原文地址:https://www.cnblogs.com/iois/p/5419814.html
Copyright © 2020-2023  润新知