• HDU 5876 Sparse Graph


    Sparse Graph

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 1520    Accepted Submission(s): 537


    Problem Description
    In graph theory, the complement of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent if and only if they are notadjacent in G

    Now you are given an undirected graph G of N nodes and M bidirectional edges of unit length. Consider the complement of G, i.e., H. For a given vertex S on H, you are required to compute the shortest distances from S to all N1 other vertices.
     
    Input
    There are multiple test cases. The first line of input is an integer T(1T<35) denoting the number of test cases. For each test case, the first line contains two integers N(2N200000) and M(0M20000). The following M lines each contains two distinct integers u,v(1u,vN) denoting an edge. And S (1SN) is given on the last line.
     
    Output
    For each of T test cases, print a single line consisting of N1 space separated integers, denoting shortest distances of the remaining N1 vertices from S (if a vertex cannot be reached from S, output ``-1" (without quotes) instead) in ascending order of vertex number.
     
    Sample Input
    1
    2 0
    1
     
    Sample Output
    1
     
    Source
     
     
     
    解析:补图上的最短路。维护一个set,里面保存尚未访问的结点。BFS的扩展结点u的时候,把与u直接相连的结点排除,得到的set在补图中都与u有一条权为1的边,访问完之后把这些点从set中删除,开始下一次扩展。即在扩展结点u的时候,只扩展与u没有边相连的结点,有边相邻的结点等下一次再扩展。
     
     
     
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <set>
    #include <queue>
    using namespace std;
    
    const int INF = 0x3f3f3f3f;
    const int MAXN = 2e5+5;
    vector<int> e[MAXN];
    int dis[MAXN];
    int n, m, s;
    
    void bfs()
    {
        set<int> s1;    //保存还未被访问过的结点
        set<int> s2;    //保存与节点u相连的结点
        set<int>::iterator it;
        for(int i = 1; i <= n; ++i){    //s1初始化为除结点s外的所有结点
            if(i != s)
                s1.insert(i);
        }
        queue<int> q;
        q.push(s);
        dis[s] = 0;
        while(!q.empty()){
            int u = q.front();
            q.pop();
            int len = e[u].size();
            for(int i = 0; i < len; ++i){
                int v = e[u][i];
                if(s1.find(v) == s1.end())
                    continue;
                s1.erase(v);    //把与结点u之间有边的点从s1排除
                s2.insert(v);   //并加入到s2
            }
            for(it = s1.begin(); it != s1.end(); ++it){
                q.push(*it);
                dis[*it] = dis[u]+1;
            }
            s1.swap(s2);    //s1中的结点已经全部访问,s2中的结点尚未访问,二者交换
            s2.clear(); //清空
        }
    }
    
    void solve()
    {
        memset(dis, INF, sizeof(dis));
        for(int i = 1; i <= n; ++i)
            e[i].clear();
        int u, v;
        while(m--){
            scanf("%d%d", &u, &v);
            e[u].push_back(v);
            e[v].push_back(u);
        }
        scanf("%d", &s);
        bfs();
        for(int i = 1; i <= n; ++i){
            if(i == s)
                continue;
            if(dis[i] >= INF)
                dis[i] = -1;
            printf("%d", dis[i]);
            if(i != n)
                printf(" ");
        }
        printf("
    ");
    }
    
    int main()
    {
        int t;
        scanf("%d", &t);
        while(t--){
            scanf("%d%d", &n, &m);
            solve();
        }
        return 0;
    }
    

      

      
  • 相关阅读:
    【1】BIO与NIO、AIO的区别
    BIO | NIO | AIO (Java版)
    Java NIO 机制分析(一) Java IO的演进
    AbstractQueuedSynchronizer同步队列与Condition等待队列协同机制
    【1】【JUC】Condition和生产者消费者模型
    【JUC】JDK1.8源码分析之CyclicBarrier
    常用排序,查找,树算法集锦
    AFNetworking
    ios推送服务,php服务端
    如何使用subversion管理iOS源代码
  • 原文地址:https://www.cnblogs.com/inmoonlight/p/5873347.html
Copyright © 2020-2023  润新知