• 矩阵翻硬币


    转自:https://blog.csdn.net/snailset/article/details/26752435 代码略有改动
    问题描述
      小明先把硬币摆成了一个 n 行 m 列的矩阵。

      随后,小明对每一个硬币分别进行一次 Q 操作。

      对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转。

      其中i和j为任意使操作可行的正整数,行号和列号都是从1开始。

      当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹——所有硬币均为正面朝上。

      小明想知道最开始有多少枚硬币是反面朝上的。于是,他向他的好朋友小M寻求帮助。

      聪明的小M告诉小明,只需要对所有硬币再进行一次Q操作,即可恢复到最开始的状态。然而小明很懒,不愿意照做。于是小明希望你给出他更好的方法。帮他计算出答案。
    输入格式
      输入数据包含一行,两个正整数 n m,含义见题目描述。
    输出格式
      输出一个正整数,表示最开始有多少枚硬币是反面朝上的。
    样例输入
    2 3
    样例输出
    1
    数据规模和约定
      对于10%的数据,n、m <= 10^3;
      对于20%的数据,n、m <= 10^7;
      对于40%的数据,n、m <= 10^15;
      对于10%的数据,n、m <= 10^1000(10的1000次方)。
     
     
    基本思路:
    这种方法很麻烦,小数据还能应付,像题目中要求有1000位数,根本不可能,所以有必要另避蹊径。从简单到复杂,慢慢分析,看有什么规律:
         先看 n = 1 的情况:对于(1 , m),只要看它翻转的次数奇偶就能确定它最终的状态。因为 x = 1, 每次第一行都要参与翻转,当 y 能整除 m 的时候,(1 , m)会翻转,(1 , m)全过程翻转的次数取决于 m 的约数个数,1 的约数个数为1 , 3 的约数个数为2, 5 的约数个数为2, 9 的约数个数为3。当 m = k^2 (k = 1 ,2 ,3···) 其约数个数为奇数,否则 其约数个数为偶数。 因为一般数约数都是成对出现,而一个数的平方数,有两个约数相等。
         所以,最后(1 , m) m = k^2 (k = 1 ,2 ,3···) 最终状态为0,其他则为1。
         而最后0的个数总和 count = sqrt(m) , 取整。
     
         再来看一般情况:(n , m)最后状态是什么?现在行的变化也是它翻转的因素。从上面容易推出,当m确定后,他的翻转次数为 n 的约数个数。而(n , m)翻转的次数 = (n的约数个数 * m的约数个数)。刚才分析了,只有在(n , m)翻转的次数为奇数时 它的最终状态为 0。而只有 奇数*奇数 = 奇数,所以n ,m的约数个数必须为奇数,即: n = k^2 (k = 1 ,2 ,3···) 且  m = j^2 (j = 1 ,2 ,3···)。
     
         最后得出结论:
           对于n行m列矩阵,经过 Q 操作后 反面的次数 count = sqrt(n) * sqrt(m) ,(取整后再相乘)。
     
         终于是找到了公式,可是又有了新的难题,怎么对1000位数开方呢?这里先给出定理:
            假设位数为len的整数,开方取整后为一个lenSqrt位数。
            当len为偶数,lenSqrt = len / 2 .
            当len为奇数,lenSqrt = (len / 2) + 1 .
         证明很简单,这里就不证了。
         现在就简单了,位数确定了从高位到低位一位一位地确定。比如:sqrt(1028) ,表示对1028开方取整
         它开方取整后两位数.先看第一位:
         取 0, 00 * 00 < 1028  所以sqrt(1028) > 00
         取 1, 10 * 10 < 1028  所以sqrt(1028) > 10
         取 2, 20 * 20 < 1028  所以sqrt(1028) > 20
         取 3, 30 * 30 < 1028  所以sqrt(1028) > 30
         取 4, 40 * 40 > 1028  所以sqrt(1028) < 40 , 所以第一位取 3 。
         第二位:
         取 0,  30 * 30 < 1028  所以sqrt(1028) > 30
         取 1,  31 * 31 < 1028  所以sqrt(1028) > 31
         取 2,  32 * 32 < 1028  所以sqrt(1028) > 32
         取 3,  33 * 33 > 1028  所以sqrt(1028) < 33 , 所以sqrt(1028) = 32 。
        大数是一样的道理,只不过大数用字符串保存,字符串相乘也要自己来实现。
     
    代码如下:
    #include<iostream>
    #include<string>
    
    using namespace std;
    string strMul(string str1,string str2){
        int len1=str1.length();
        int len2=str2.length();
        int num[500]={0};
        string ans="";
        for(int i=0;i<len1;i++){
            for(int j=0;j<len2;j++){
                num[len1-1-i+len2-1-j]+=(str1[i]-'0')*(str2[j]-'0');
            }
        }
        for(int i=0;i<len1+len2-1;i++){
            num[i+1]+=num[i]/10;
            num[i]%=10;
        }
        int k=len1+len2-1;
        for(;k>=0;k--){
            if(num[k]!=0){
                break;
            }
        }
        for(;k>=0;k--){
            ans+=(num[k]+'0');
        }
        return ans;
    }
    int compare(string str1,string str2,int pos){
        int len1=str1.length();
        int len2=str2.length();
        if(len1+pos>len2){
            return 1;
        }else if(len1+pos<len2){
            return 0;
        }else{
            for(int i=0;i<len1;i++){
                if(str1[i]<str2[i]){
                    return 0;
                }else if(str1[i]>str2[i]){
                    return 1;
                }
            }
            return 0;
        }
    }
    string strSqrt(string s){
        int len=s.length();
        if(len&1){
            len=len/2+1;
        }else{
            len/=2;
        }
        string ans="";
        string tmp="";
        for(int i=0;i<len;i++){
            for(int j=0;j<10;j++){
                tmp=ans;
                tmp+=(j+'0');
                if(compare(strMul(tmp,tmp),s,2*(len-1-i))==1){
                    ans+=(j-1+'0');
                    break;
                }else if(j==9){
                    ans+=(j+'0');
                }
            }
        }
        return ans;
    }
    int main(){
        string n,m;
        cin>>n>>m;
        cout<<strMul(strSqrt(n),strSqrt(m))<<endl;
        return 0;
    }
    

      

  • 相关阅读:
    net下开发COM+组件(一)
    C#中自定义属性的例子
    textBox的readonly=true
    关于ADO.Net的数据库连接池
    CYQ.Data 轻量数据层之路 使用篇三曲 MAction 取值赋值(十四)
    CYQ.Data 轻量数据层之路 SQLHelper 回头太难(八)
    CYQ.Data 轻量数据层之路 MDataTable 绑定性能优化之章(十一)
    C# 浅拷贝与深拷贝区别 解惑篇
    C#中的 ref 传进出的到底是什么 解惑篇
    CYQ.Data 轻量数据层之路 使用篇五曲 MProc 存储过程与SQL(十六)
  • 原文地址:https://www.cnblogs.com/imzscilovecode/p/8633471.html
Copyright © 2020-2023  润新知