基于Kinect-Dk的多聚焦图像融合
2021.7.16
本机环境
Visual Studio2019(需安装c++拓展)
kinectSDK1.4.1
新建空白C++控制台工程并添加源文件Main.cpp
使用kinect-dk
1、下载SDK
此处为Github仓库提供下载,选择最新版本1.4.1最新版即可。
这里我建议安装到C盘,会直接出现在根目录下
SDK目录下是一些头文件
tools目录下则是工具,总共有三种
Kinect查看器可以启动相机,或者打开已经录制好的视频。并且展示KinectDk的三种模式,RGB模式,红外模式,深度模式。
录制器
主要使用命令行来执行,可以录制一定长度的视频。
命令行切换到tool目录下
k4arecorder.exe -l 5 %TEMP%\output.mkv
即可录制五秒视频
完整参数介绍详见此页
https://docs.microsoft.com/zh-cn/azure/kinect-dk/azure-kinect-recorder
2、连接电源
在图片中,type-c接口的线是数据接口,要连接到电脑上,要求USB3.0(如果连接不良可以检查一下是否是使用了拓展坞,尝试使用电脑自带的USB3.0接口)
圆形接口的线是电源线,需要连接到电源。
项目部署
1、新建空白C++控制台工程并添加源文件Main.cpp
2、安装 Azure Kinect NuGet 包
右键 引用 - 管理NuGet程序包
3、搜索Microsoft.Azure.Kinect.Sensor,从列表中选择该包并安装。
4、搜索cv
5、添加头文件和库文件
5.1 加入头文件k4a.h
直接右键 头文件 - 添加 - 现有项,找到k4a.h导入。默认路径为C:\Program Files\Azure Kinect SDK v1.4.1\sdk\include\k4a
5.2 配置头文件目录和库文件目录
右键自己的项目,选择属性,上方的平台选择 x64
- C/C++ - 常规 - 附加包含目录,加入SDK的include路径
- 链接器 - 常规 - 附加库目录,加入SDK的lib路径
-
链接器 - 输入 - 附加依赖项,加入k4a.lib
注意:每添加一项后,点击右下角应用。
项目运行
项目地址https://github.com/Applied-Energetic/KinectDK
在VS项目目录下新建三个文件夹——rgb、depth、ir,输出的图片会存储到这里。
运行时点击本地Windows调试器即可。
相机内参获取
KinectDk内置深度相机,其焦距等参数为一个固定值,因此无法多聚焦,下面提供一种获取焦距的方法。
获取内参矩阵
#define VERIFY(result, error) \
if(result != K4A_RESULT_SUCCEEDED) \
{ \
printf("%s \n - (File: %s, Function: %s, Line: %d)\n", error, __FILE__, __FUNCTION__, __LINE__); \
exit(1); \
}
int main() {
uint32_t count = k4a_device_get_installed_count();
if (count == 0)
{
printf("No k4a devices attached!\n");
return 1;
}
// Open the first plugged in Kinect device
k4a_device_t device = NULL;
if (K4A_FAILED(k4a_device_open(K4A_DEVICE_DEFAULT, &device)))
{
printf("Failed to open k4a device!\n");
return 1;
}
// Get the size of the serial number
size_t serial_size = 0;
k4a_device_get_serialnum(device, NULL, &serial_size);
// Allocate memory for the serial, then acquire it
char* serial = (char*)(malloc(serial_size));
k4a_device_get_serialnum(device, serial, &serial_size);
printf("Opened device: %s\n", serial);
free(serial);
// Configure a stream of 4096x3072 BRGA color data at 15 frames per second
k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
config.camera_fps = K4A_FRAMES_PER_SECOND_15;
config.color_format = K4A_IMAGE_FORMAT_COLOR_BGRA32;
config.color_resolution = K4A_COLOR_RESOLUTION_3072P;
// Start the camera with the given configuration
if (K4A_FAILED(k4a_device_start_cameras(device, &config)))
{
printf("Failed to start cameras!\n");
k4a_device_close(device);
return 1;
}
k4a_calibration_t sensor_calibration;
k4a_device_get_calibration(device, config.depth_mode, config.color_resolution, &sensor_calibration);
VERIFY(k4a_device_get_calibration(device, config.depth_mode, config.color_resolution, &sensor_calibration),
"Get depth camera calibration failed!");
k4a_transformation_create(&sensor_calibration);
cout << k4a_transformation_create(&sensor_calibration)<<endl;
// ...Camera capture and application specific code would go here...
// Shut down the camera when finished with application logic
k4a_device_stop_cameras(device);
k4a_device_close(device);
return 0;
}
#include <k4a/k4a.h>
#include <stdio.h>
#include <vector>
using namespace std;
#include "opencv2/core.hpp"
#include "opencv2/calib3d.hpp"
using namespace cv;
static void clean_up(k4a_device_t device)
{
if (device != NULL)
{
k4a_device_close(device);
}
}
int main(int argc, char** /*argv*/)
{
uint32_t device_count = 0;
k4a_device_t device = NULL;
k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
if (argc != 1)
{
printf("Usage: opencv_example.exe\n");
return 2;
}
device_count = k4a_device_get_installed_count();
if (device_count == 0)
{
printf("No K4A devices found\n");
return 1;
}
if (K4A_RESULT_SUCCEEDED != k4a_device_open(K4A_DEVICE_DEFAULT, &device))
{
printf("Failed to open device\n");
clean_up(device);
return 1;
}
config.depth_mode = K4A_DEPTH_MODE_WFOV_2X2BINNED;
config.color_resolution = K4A_COLOR_RESOLUTION_1080P;
config.camera_fps = K4A_FRAMES_PER_SECOND_30;
k4a_calibration_t calibration;
if (K4A_RESULT_SUCCEEDED !=
k4a_device_get_calibration(device, config.depth_mode, config.color_resolution, &calibration))
{
printf("Failed to get calibration\n");
clean_up(device);
return 1;
}
vector<k4a_float3_t> points_3d = { { { 0.f, 0.f, 1000.f } }, // color camera center
{ { -1000.f, -1000.f, 1000.f } }, // color camera top left
{ { 1000.f, -1000.f, 1000.f } }, // color camera top right
{ { 1000.f, 1000.f, 1000.f } }, // color camera bottom right
{ { -1000.f, 1000.f, 1000.f } } }; // color camera bottom left
// k4a project function
vector<k4a_float2_t> k4a_points_2d(points_3d.size());
for (size_t i = 0; i < points_3d.size(); i++)
{
int valid = 0;
k4a_calibration_3d_to_2d(&calibration,
&points_3d[i],
K4A_CALIBRATION_TYPE_COLOR,
K4A_CALIBRATION_TYPE_DEPTH,
&k4a_points_2d[i],
&valid);
}
// converting the calibration data to OpenCV format
// extrinsic transformation from color to depth camera
Mat se3 =
Mat(3, 3, CV_32FC1, calibration.extrinsics[K4A_CALIBRATION_TYPE_COLOR][K4A_CALIBRATION_TYPE_DEPTH].rotation);
Mat r_vec = Mat(3, 1, CV_32FC1);
Rodrigues(se3, r_vec);
Mat t_vec =
Mat(3, 1, CV_32F, calibration.extrinsics[K4A_CALIBRATION_TYPE_COLOR][K4A_CALIBRATION_TYPE_DEPTH].translation);
// intrinsic parameters of the depth camera
k4a_calibration_intrinsic_parameters_t* intrinsics = &calibration.depth_camera_calibration.intrinsics.parameters;
vector<float> _camera_matrix = {
intrinsics->param.fx, 0.f, intrinsics->param.cx, 0.f, intrinsics->param.fy, intrinsics->param.cy, 0.f, 0.f, 1.f
};
Mat camera_matrix = Mat(3, 3, CV_32F, &_camera_matrix[0]);
vector<float> _dist_coeffs = { intrinsics->param.k1, intrinsics->param.k2, intrinsics->param.p1,
intrinsics->param.p2, intrinsics->param.k3, intrinsics->param.k4,
intrinsics->param.k5, intrinsics->param.k6 };
Mat dist_coeffs = Mat(8, 1, CV_32F, &_dist_coeffs[0]);
// OpenCV project function
vector<Point2f> cv_points_2d(points_3d.size());
projectPoints(*reinterpret_cast<vector<Point3f>*>(&points_3d),
r_vec,
t_vec,
camera_matrix,
dist_coeffs,
cv_points_2d);
for (size_t i = 0; i < points_3d.size(); i++)
{
printf("3d point:\t\t\t(%.5f, %.5f, %.5f)\n", points_3d[i].v[0], points_3d[i].v[1], points_3d[i].v[2]);
printf("OpenCV projectPoints:\t\t(%.5f, %.5f)\n", cv_points_2d[i].x, cv_points_2d[i].y);
printf("k4a_calibration_3d_to_2d:\t(%.5f, %.5f)\n\n", k4a_points_2d[i].v[0], k4a_points_2d[i].v[1]);
}
cout << camera_matrix << endl;
//cout << intrinsics->param.fx << endl;
clean_up(device);
return 0;
}
结论
1、目前还没找到修改相机的方法,官方人员的回复是不能修改内参。
issue链接如下
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/issues/1640
The calibration matrices (intrin, extrin) are unchangable for a given mode (wide pov, narrow pov, etc.). There is no variable lens focus.
Berlin, Germany
2、如果想要获取多聚焦RGBD图像的话应该考虑更换一种设备。
3、不更换设备的前提下想要利用RGBD数据在图像融合领域进行训练可能需要一种新的图像处理算法。
引用
https://github.com/microsoft/Azure-Kinect-Sensor-SDK
此项目为KinectDk开发者仓库,有问题可以在这里询问。